ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnons and Excitation Continuum in XXZ triangular antiferromagnetic model: Application to $Ba_3CoSb_2O_9$

78   0   0.0 ( 0 )
 نشر من قبل Adolfo Emilio Trumper
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the excitation spectrum of the triangular-lattice antiferromagnetic $XXZ$ model using series expansions and mean field Schwinger bosons approaches. The single-magnon spectrum computed with series expansions exhibits rotonic minima at the middle points of the edges of the Brillouin zone, for all values of the anisotropy parameter in the range $0leq J^z/Jleq1$. Based on the good agreement with series expansions for the single-magnon spectrum, we compute the full dynamical magnetic structure factor within the mean field Schwinger boson approach to investigate the relevance of the $XXZ$ model for the description of the unusual spectrum found recently in $Ba_3CoSb_2O_9$. In particular, we obtain an extended continuum above the spin wave excitations, which is further enhanced and brought closer to those observed in $Ba_3CoSb_2O_9$ with the addition of a second neighbor exchange interaction approximately 15% of the nearest-neighbor value. Our results support the idea that excitation continuum with substantial spectral-weight are generically present in two-dimensional frustrated spin systems and fractionalization in terms of {it bosonic} spinons presents an efficient way to describe them.

قيم البحث

اقرأ أيضاً

We develop an approach to describe antiferromagnetic magnons on a bipartite lattice supporting the N{e}el state using fractionalized degrees of freedom typically inherent to quantum spin liquids. In particular we consider a long-range magnetically or dered state of interacting two-dimensional quantum spin$-1/2$ models using the Chern-Simons (CS) fermion representation of interacting spins. The interaction leads to Cooper instability and pairing of CS fermions, and to CS superconductivity which spontaneously violates the continuous $mathrm{U}(1)$ symmetry generating a linearly-dispersing gapless Nambu-Goldstone mode due to phase fluctuations. We evaluate this mode and show that it is in high-precision agreement with magnons of the corresponding N{e}el antiferromagnet irrespective to the lattice symmetry. Using the fermion formulation of a system with competing interactions, we show that the frustration gives raise to nontrivial long-range four, six, and higher-leg interaction vertices mediated by the CS gauge field, which are responsible for restoring of the continuous symmetry at sufficiently strong frustration. We identify these new interaction vertices and discuss their implications to unconventional phase transitions. We also apply the proposed theory to a model of anyons that can be tuned continuously from fermions to bosons.
We explore the magnetic excitations of the spin-1/2 triangular antiferromagnet Ba3CoSb2O9 in its 120 degree ordered phase using single-crystal high-resolution inelastic neutron scattering. Sharp magnons with no decay are observed throughout reciproca l space, with a strongly renormalized dispersion and multiple soft modes compared to linear spin wave theory. We propose an empirical parametrization that can quantitatively capture the complete dispersions in the three-dimensional Brillouin zone and explicitly show that the dispersion renormalizations have the direct consequence that one to two magnon decays are avoided throughout reciprocal space, whereas such decays would be allowed for the unrenormalized dispersions. At higher energies, we observe a very strong continuum of excitations with highly-structured intensity modulations extending up at least 4x the maximum one-magnon energy. The one-magnon intensities decrease much faster upon increasing energy than predicted by linear spin wave theory and the higher-energy continuum contains much more intensity than can be accounted for by a two-magnon cross-section, suggesting a significant transfer of spectral weight from the high-energy magnons into the higher-energy continuum states. We attribute the strong dispersion renormalizations and substantial transfer of spectral weight to continuum states to the effect of quantum fluctuations and interactions beyond the spin wave approximation, and make connections to theoretical approaches that might capture such effects. Finally, through measurements in a strong applied magnetic field, we find evidence for magnetic domains with opposite senses for the spin rotation in the 120 degree ordered ground state, as expected in the absence of Dzyaloshinskii-Moriya interactions, when the sense of spin rotation is selected via spontaneous symmetry breaking.
115 - A. Niyazi , D. Geffroy , 2021
We present a dynamical mean-field study of antiferromagnetic magnons in one-, two- and three-orbital Hubbard model of square and bcc cubic lattice at intermediate coupling strength. Weinvestigate the effect of anisotropy introduced by an external mag netic field or single-ion anisotropy.For the latter we tune continuously between the easy-axis and easy-plane models. We also analyzea model with spin-orbit coupling in cubic site-symmetry setting. The ordered states as well as themagnetic excitations are sensitive to even a small breaking ofSU(2)symmetry of the model andfollow the expectations of spin-wave theory as well as general symmetry considerations.
64 - J. Werner , C. Neef , C. Koo 2021
Low-energy magnon excitations in magnetoelectric LiFePO$_4$ have been investigated by high-frequency high-field electron spin resonance spectroscopy in magnetic fields up to B = 58 T and frequencies up to f = 745 GHz. For magnetic fields applied alon g the easy magnetic axis, the excitation gap softens and vanishes at the spin-flop field of BSF = 32 T before hardening again at higher fields. In addition, for B smaller than BSF we observe a resonance mode assigned to excitations due to Dzyaloshinskii-Moriya (DM)-interactions, thereby evidencing sizable DM interaction of approx 150 micro eV in LiFePO4. Both the magnetisation and the excitations up to high magnetic fields are described in terms of a mean-field theory model which extends recent zero field inelastic neutron scattering results. Our results imply that magnetic interactions as well as magnetic anisotropy have a sizable quadratic field dependence which we attribute to significant magnetostriction.
We present an interpolation method for the specific heat $c_v(T)$, when there is a phase transition with a logarithmic singularity in $c_v$ at a critical temperature $T=T_c$. The method uses the fact that $c_v$ is constrained both by its high tempera ture series expansion, and just above $T_c$ by the type of singularity. We test our method on the ferro and antiferromagnetic Ising model on the two-dimensional square, triangular, honeycomb, and kagome lattices, where we find an excellent agreement with the exact solutions. We then explore the XXZ Heisenberg model, for which no exact results are available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا