ترغب بنشر مسار تعليمي؟ اضغط هنا

${L^p}$-Liouville Theorems for Invariant Partial Differential Operators in ${mathbb{R}^n}$

230   0   0.0 ( 0 )
 نشر من قبل Alessia Elisabetta Kogoj
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove some $L^p$-Liouville theorems for hypoelliptic second order Partial Differential Operators left translation invariant with respect to a Lie group composition law in $mathbb{R}^n$. Results for both solutions and subsolutions are given.



قيم البحث

اقرأ أيضاً

We prove weighted $L^p$-Liouville theorems for a class of second order hypoelliptic partial differential operators $mathcal{L}$ on Lie groups $mathbb{G}$ whose underlying manifold is $n$-dimensional space. We show that a natural weight is the right-i nvariant measure $check{H}$ of $mathbb{G}$. We also prove Liouville-type theorems for $C^2$ subsolutions in $L^p(mathbb{G},check{H})$. We provide examples of operators to which our results apply, jointly with an application to the uniqueness for the Cauchy problem for the evolution operator $mathcal{L}-partial_t$.
We characterize positivity preserving, translation invariant, linear operators in $L^p(mathbb{R}^n)^m$, $p in [1,infty)$, $m,n in mathbb{N}$.
In this article, we begin a systematic study of the boundedness and the nuclearity properties of multilinear periodic pseudo-differential operators and multilinear discrete pseudo-differential operators on $L^p$-spaces. First, we prove analogues of k nown multilinear Fourier multipliers theorems (proved by Coifman and Meyer, Grafakos, Tomita, Torres, Kenig, Stein, Fujita, Tao, etc.) in the context of periodic and discrete multilinear pseudo-differential operators. For this, we use the periodic analysis of pseudo-differential operators developed by Ruzhansky and Turunen. Later, we investigate the $s$-nuclearity, $0<s leq 1,$ of periodic and discrete pseudo-differential operators. To accomplish this, we classify those $s$-nuclear multilinear integral operators on arbitrary Lebesgue spaces defined on $sigma$-finite measures spaces. We also study similar properties for periodic Fourier integral operators. Finally, we present some applications of our study to deduce the periodic Kato-Ponce inequality and to examine the $s$-nuclearity of multilinear Bessel potentials as well as the $s$-nuclearity of periodic Fourier integral operators admitting suitable types of singularities.
We study harmonic functions for general Dirichlet forms. First we review consequences of Fukushimas ergodic theorem for the harmonic functions in the domain of the $ L^{p} $ generator. Secondly we prove analogues of Yaus and Karps Liouville theorems for weakly harmonic functions. Both say that weakly harmonic functions which satisfy certain $ L^{p} $ growth criteria must be constant. As consequence we give an integral criterion for recurrence.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first obtain a decomposition for any distribution of the variable weak Hardy space into good an d bad parts and then prove the following real interpolation theorem between the variable Hardy space $H^{p(cdot)}(mathbb R^n)$ and the space $L^{infty}(mathbb R^n)$: begin{equation*} (H^{p(cdot)}(mathbb R^n),L^{infty}(mathbb R^n))_{theta,infty} =W!H^{p(cdot)/(1-theta)}(mathbb R^n),quad thetain(0,1), end{equation*} where $W!H^{p(cdot)/(1-theta)}(mathbb R^n)$ denotes the variable weak Hardy space. As an application, the variable weak Hardy space $W!H^{p(cdot)}(mathbb R^n)$ with $p_-:=mathopmathrm{ess,inf}_{xinrn}p(x)in(1,infty)$ is proved to coincide with the variable Lebesgue space $W!L^{p(cdot)}(mathbb R^n)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا