ﻻ يوجد ملخص باللغة العربية
This paper presents a brief, semi-technical comparison of the essential features of the frequentist and Bayesian approaches to statistical inference, with several illustrative examples implemented in Python. The differences between frequentism and Bayesianism fundamentally stem from differing definitions of probability, a philosophical divide which leads to distinct approaches to the solution of statistical problems as well as contrasting ways of asking and answering questions about unknown parameters. After an example-driven discussion of these differences, we briefly compare several leading Python statistical packages which implement frequentist inference using classical methods and Bayesian inference using Markov Chain Monte Carlo.
Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in the biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundament
The Bayesian approach to quantum mechanics of Caves, Fuchs and Schack is presented. Its conjunction of realism about physics along with anti-realism about much of the structure of quantum theory is elaborated; and the position defended from common ob
The lately developed part of Quantum Bayesianism named QBism has been proclaimed by its authors a powerful interpretation of Quantum Physics. This article presents analysis of some aspects of QBism. The considered examples show inconsistencies in som
We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as Fle
The finite sensitivity of instruments or detection methods means that data sets in many areas of astronomy, for example cosmological or exoplanet surveys, are necessarily systematically incomplete. Such data sets, where the population being investiga