ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Galileon Inflation

270   0   0.0 ( 0 )
 نشر من قبل Donough Regan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this short paper, we present constraints on the Galileon inflationary model from the CMB bispectrum. We employ a principal-component analysis of the independent degrees of freedom constrained by data and apply this to the WMAP 9-year data to constrain the free parameters of the model. A simple Bayesian comparison establishes that support for the Galileon model from bispectrum data is at best weak.


قيم البحث

اقرأ أيضاً

110 - Taotao Qiu , Yu-Tong Wang 2015
We study a nonsingular bounce inflation model, which can drive the early universe from a contracting phase, bounce into an ordinary inflationary phase, followed by the reheating process. Besides the bounce that avoided the Big-Bang singularity which appears in the standard cosmological scenario, we make use of the Horndesky theory and design the kinetic and potential forms of the lagrangian, so that neither of the two big problems in bouncing cosmology, namely the ghost and the anisotropy problems, will appear. The cosmological perturbations can be generated either in the contracting phase or in the inflationary phase, where in the latter the power spectrum will be scale-invariant and fit the observational data, while in the former the perturbations will have nontrivial features that will be tested by the large scale structure experiments. We also fit our model to the CMB TT power spectrum.
We study gravitational wave production from gauge preheating in a variety of inflationary models, detailing its dependence on both the energy scale and the shape of the potential. We show that preheating into Abelian gauge fields generically leads to a large gravitational wave background that contributes significantly to the effective number of relativistic degrees of freedom in the early universe, $N_mathrm{eff}$. We demonstrate that the efficiency of gravitational wave production is correlated with the tensor-to-scalar ratio, $r$. In particular, we show that efficient gauge preheating in models whose tensor-to-scalar ratio would be detected by next-generation cosmic microwave background experiments ($r gtrsim 10^{-3}$) will be either detected through its contribution to $N_mathrm{eff}$ or ruled out. Furthermore, we show that bounds on $N_mathrm{eff}$ provide the most sensitive probe of the possible axial coupling of the inflaton to gauge fields regardless of the potential.
We study the Hybrid Natural Inflation (HNI) model and some of its realisations in the light of recent CMB observations, mainly Planck temperature and WMAP-9 polarization, and compare with the recent release of BICEP2 dataset. The inflationary sector of HNI is essentially given by the potential $V(phi) = V_0(1+acos (frac{phi}{f} ) )$, where $a$ is a positive constant smaller or equal to one and $f$ is the scale of (pseudo Nambu-Goldstone) symmetry breaking. We show that to describe the HNI model realisations we only need two observables; the spectral index $n_s$, the tensor-to-scalar ratio, and a free parameter in the amplitude of the cosine function $a$. We find that in order to make the HNI model compatible with the BICEP2 observations, we require a large positive running of the spectra. We find that this could over-produce primordial black holes in the most consistent case of the model. This situation could be aleviated if, as recently argued, the BICEP2 data do not correspond to primordial gravitational waves.
We demonstrate that gravitational waves generated by efficient gauge preheating after axion inflation generically contribute significantly to the effective number of relativistic degrees of freedom $N_mathrm{eff}$. We show that, with existing Planck limits, gravitational waves from preheating already place the strongest constraints on the inflatons possible axial coupling to Abelian gauge fields. We demonstrate that gauge preheating can completely reheat the Universe regardless of the inflationary potential. Further, we quantify the variation of the efficiency of gravitational wave production from model to model and show that it is correlated with the tensor-to-scalar ratio. In particular, when combined with constraints on models whose tensor-to-scalar ratios would be detected by next-generation cosmic microwave background experiments, $rgtrsim 10^{-3}$, constraints from $N_mathrm{eff}$ will probe or rule out the entire coupling regime for which gauge preheating is efficient.
Galileon gravity offers a robust gravitational theory for explaining cosmic acceleration, having a rich phenomenology of testable behaviors. We explore three classes of Galileon models -- standard uncoupled, and linearly or derivatively coupled to ma tter -- investigating the expansion history with particular attention to early time and late time attractors, as well as the linear perturbations. From the relativistic and nonrelativistic Poisson equations we calculate the generalizations of the gravitational strength (Newtons constant), deriving its early and late time behavior. By scanning through the parameters we derive distributions of the gravitational strength at various epochs and trace the paths of gravity in its evolution. Using ghost-free and stability criteria we restrict the allowed parameter space, finding in particular that the linear and derivative coupled models are severely constrained by classical instabilities in the early universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا