ﻻ يوجد ملخص باللغة العربية
The characteristics of the odd-even effect in fission-fragment Z distributions are compared to a model based on statistical mechanics. Special care is taken for using a consistent description for the influence of pairing correlations on the nuclear level density. The variation of the odd-even effect with the mass of the fissioning nucleus and with fission asymmetry is explained by the important statistical weight of configurations where the light nascent fission fragment populates the lowest energy state of an even-even nucleus. This implies that entropy drives excitation energy and unpaired nucleons predominantly to the heavy fragment. Therefore, within our model, the odd-even effect appears as an additional signature of the recently discovered energy-sorting process in nuclear fission.
The even-odd effect in fission is explained by a model based on statistical mechanics. It reveals that the variation of the even-odd effect with the mass of the fissioning nucleus and the increase towards asymmetric splits is due to the important sta
Potential energy surfaces and fission barriers of superheavy nuclei are analyzed in the macroscopic-microscopic model. The Lublin-Strasbourg Drop (LSD) is used to obtain the macroscopic part of the energy, whereas the shell and pairing energy correct
Odd-Even Staggering (OES) appears in many areas of nuclear physics, and is generally associated with the pairing term in the nuclear binding energy. To explore this effect, we use the Improved Statistical Multifragmentation Model to populate an ensem
The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization
Although nuclear fission can be understood qualitatively as an evolution of the nuclear shape, a quantitative description has proven to be very elusive. In particular, until now, there exists no model with demonstrated predictive power for the fissio