ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectrally Accurate Causality Enforcement using SVD-based Fourier Continuations for High Speed Digital Interconnects

209   0   0.0 ( 0 )
 نشر من قبل Lyudmyla Barannyk
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce an accurate and robust technique for accessing causality of network transfer functions given in the form of bandlimited discrete frequency responses. These transfer functions are commonly used to represent the electrical response of high speed digital interconnects used on chip and in electronic package assemblies. In some cases small errors in the model development lead to non-causal behavior that does not accurately represent the electrical response and may lead to a lack of convergence in simulations that utilize these models. The approach is based on Hilbert transform relations or Kramers-Kronig dispersion relations and a construction of causal Fourier continuations using a regularized singular value decomposition (SVD) method. Given a transfer function, non-periodic in general, this procedure constructs highly accurate Fourier series approximations on the given frequency interval by allowing the function to be periodic in an extended domain. The causality dispersion relations are enforced spectrally and exactly. This eliminates the necessity of approximating the transfer function behavior at infinity and explicit computation of the Hilbert transform. We perform the error analysis of the method and take into account a possible presence of a noise or approximation errors in data. The developed error estimates can be used in verifying causality of the given data. The performance of the method is tested on several analytic and simulated examples that demonstrate an excellent accuracy and reliability of the proposed technique in agreement with the obtained error estimates. The method is capable of detecting very small localized causality violations with amplitudes close to the machine precision.

قيم البحث

اقرأ أيضاً

We present a new method for time delay estimation using band limited frequency domain data representing the port responses of interconnect structures. The approach is based on the recently developed by the authors spectrally accurate method for causa lity characterization that employs SVD-based causal Fourier continuations. The time delay extraction is constructed by incorporating a linearly varying phase factor to the system of equations that determines Fourier coefficients. The method is capable of determining time delay using data affected by noise or approximation errors that come from measurements or numerical simulations. It can also be employed when only a limited number of frequency responses is available. The technique can be extended to multi-port and mixed mode networks. Several analytical and simulated examples are used to demonstrate the accuracy and strength of the proposed technique.
In this paper, we propose a Spin-Torque (ST) based sensing scheme that can enable energy efficient multi-bit long distance interconnect architectures. Current-mode interconnects have recently been proposed to overcome the performance degradations ass ociated with conventional voltage mode Copper (Cu) interconnects. However, the performance of current mode interconnects are limited by analog current sensing transceivers and equalization circuits. As a solution, we propose the use of ST based receivers that use Magnetic Tunnel Junctions (MTJ) and simple digital components for current-to-voltage conversion and do not require analog transceivers. We incorporate Spin-Hall Metal (SHM) in our design to achieve high speed sensing. We show both single and multi-bit operations that reveal major benefits at higher speeds. Our simulation results show that the proposed technique consumes only 3.93-4.72 fJ/bit/mm energy while operating at 1-2 Gbits/sec; which is considerably better than existing charge based interconnects. In addition, Voltage Controlled Magnetic Anisotropy (VCMA) can reduce the required current at the sensor. With the inclusion of VCMA, the energy consumption can be further reduced to 2.02-4.02 fJ/bit/mm
This paper reports the demonstration of high-speed PAM-4 transmission using a 1.5-{mu}m single-mode vertical cavity surface emitting laser (SM-VCSEL) over multicore fiber with 7 cores over different distances. We have successfully generated up to 70 Gbaud 4-level pulse amplitude modulation (PAM-4) signals with a VCSEL in optical back-to-back, and transmitted 50 Gbaud PAM-4 signals over both 1-km dispersion-uncompensated and 10-km dispersion-compensated in each core, enabling a total data throughput of 700 Gbps over the 7-core fiber. Moreover, 56 Gbaud PAM-4 over 1-km has also been shown, whereby unfortunately not all cores provide the required 3.8 $times$ 10 $^{-3}$ bit error rate (BER) for the 7% overhead-hard decision forward error correction (7% OH HDFEC). The limited bandwidth of the VCSEL and the adverse chromatic dispersion of the fiber are suppressed with pre-equalization based on accurate end-to-end channel characterizations. With a digital post-equalization, BER performance below the 7% OH-HDFEC limit is achieved over all cores. The demonstrated results show a great potential to realize high-capacity and compact short-reach optical interconnects for data centers.
Single-pixel cameras based on the concepts of compressed sensing (CS) leverage the inherent structure of images to retrieve them with far fewer measurements and operate efficiently over a significantly broader spectral range than conventional silicon -based cameras. Recently, photonic time-stretch (PTS) technique facilitates the emergence of high-speed single-pixel cameras. A significant breakthrough in imaging speed of single-pixel cameras enables observation of fast dynamic phenomena. However, according to CS theory, image reconstruction is an iterative process that consumes enormous amounts of computational time and cannot be performed in real time. To address this challenge, we propose a novel single-pixel imaging technique that can produce high-quality images through rapid acquisition of their effective spatial Fourier spectrum. We employ phase-shifting sinusoidal structured illumination instead of random illumination for spectrum acquisition and apply inverse Fourier transform to the obtained spectrum for image restoration. We evaluate the performance of our prototype system by recognizing quick response (QR) codes and flow cytometric screening of cells. A frame rate of 625 kHz and a compression ratio of 10% are experimentally demonstrated in accordance with the recognition rate of the QR code. An imaging flow cytometer enabling high-content screening with an unprecedented throughput of 100,000 cells/s is also demonstrated. For real-time imaging applications, the proposed single-pixel microscope can significantly reduce the time required for image reconstruction by two orders of magnitude, which can be widely applied in industrial quality control and label-free biomedical imaging.
We consider X-ray coherent scatter imaging, where the goal is to reconstruct momentum transfer profiles (spectral distributions) at each spatial location from multiplexed measurements of scatter. Each material is characterized by a unique momentum tr ansfer profile (MTP) which can be used to discriminate between different materials. We propose an iterative image reconstruction algorithm based on a Poisson noise model that can account for photon-limited measurements as well as various second order statistics of the data. To improve image quality, previous approaches use edge-preserving regularizers to promote piecewise constancy of the image in the spatial domain while treating each spectral bin separately. Instead, we propose spectrally grouped regularization that promotes piecewise constant images along the spatial directions but also ensures that the MTPs of neighboring spatial bins are similar, if they contain the same material. We demonstrate that this group regularization results in improvement of both spectral and spatial image quality. We pursue an optimization transfer approach where convex decompositions are used to lift the problem such that all hyper-voxels can be updated in parallel and in closed-form. The group penalty introduces a challenge since it is not directly amendable to these decompositions. We use the alternating directions method of multipliers (ADMM) to replace the original problem with an equivalent sequence of sub-problems that are amendable to convex decompositions, leading to a highly parallel algorithm. We demonstrate the performance on real data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا