ﻻ يوجد ملخص باللغة العربية
This paper presents an approach towards specifying and verifying adaptive distributed systems. We here take fault-handling as an example of adaptive behavior and propose a modeling language Sandal for describing fault-prone message-passing systems. One of the unique mechanisms of the language is a linguistic support for abstracting typical faults such as unexpected termination of processes and random loss of messages. The Sandal compiler translates a model into a set of NuSMV modules. During the compilation process, faults specified in the model will be woven into the output. One can thus enjoy full-automatic exhaustive fault-injection without writing faulty behaviors explicitly. We demonstrate the advantage of the language by verifying a model of the two-phase commit protocol under faulty environment.
Boundary representation (B-rep) models are the standard way 3D shapes are described in Computer-Aided Design (CAD) applications. They combine lightweight parametric curves and surfaces with topological information which connects the geometric entitie
We view channels as the main form of resources in a message-passing programming paradigm. These channels need to be carefully managed in settings where resources are scarce. To study this problem, we extend the pi-calculus with primitives for channel
Message passing is widely used in industry to develop programs consisting of several distributed communicating components. Developing functionally correct message passing software is very challenging due to the concurrent nature of message exchanges.
Generative models provide a powerful framework for probabilistic reasoning. However, in many domains their use has been hampered by the practical difficulties of inference. This is particularly the case in computer vision, where models of the imaging
We study the problem of estimating a rank-$1$ signal in the presence of rotationally invariant noise-a class of perturbations more general than Gaussian noise. Principal Component Analysis (PCA) provides a natural estimator, and sharp results on its