ترغب بنشر مسار تعليمي؟ اضغط هنا

Reverberation measurement of the inner radius of the dust torus in NGC 4151 during 2008-2013

480   0   0.0 ( 0 )
 نشر من قبل Victor Oknyansky
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the correlation between infrared (JHKL) and optical (B) fluxes of the variable nucleus of the Seyfert galaxy NGC 4151 using partially published data for the last 6 years (2008-2013.). Here we are using the same data as in Oknyansky et al. (2014), but include also optical (B) data from Guo et al. We find that the lag of flux in all the infrared bands is the same, 40 +- 6 days, to within the measurement accuracy. Variability in the J and K bands is not quite simultaneous, perhaps due to the differing contributions of the accretion disk in these bands. The lag found for the K band compared with the B band is not significantly different from earlier values obtained for the period 2000-2007. However, finding approximately the same lags in all IR bands for 2008-2013 differs from previous results at earlier epochs when the lag increased with increasing wavelength. Examples of almost the same lag in different IR bands are known for some other active nuclei. In the case of NGC 4151 it appears that the relative lags between the IR bands may be different in different years. The available data, unfortunately, do not allow us to investigate a possible change in the lags during the test interval. We discuss our results in the framework of the standard model where the variable infrared radiation is mainly due to thermal re-emission from the part of the dusty torus closest to the central source. There is also a contribution of some IR emission from the accretion disk, and this contribution increases with decreasing wavelength. Some cosmological applications of obtained results are discussed.



قيم البحث

اقرأ أيضاً

We present the results of a dust reverberation survey for 17 nearby Seyfert 1 galaxies, which provides the largest homogeneous data collection for the radius of the innermost dust torus. A delayed response of the K-band light curve after the V-band l ight curve was found for all targets, and 49 measurements of lag times between the flux variation of the dust emission in the K band and that of the optical continuum emission in the V band were obtained. The lag times strongly correlated with the optical luminosity in the luminosity range of M_V=-16 to -22 mag, and the regression analysis was performed to obtain the correlation log $Delta t$ (days) = -2.11 -0.2 M_V assuming $Delta t propto L^{0.5}$, which was theoretically expected. We discuss the possible origins of the intrinsic scatter of the dust lag-luminosity correlation, which was estimated to be about 0.13 dex, and we find that the difference of internal extinction and delayed response of changes in lag times to the flux variations could have partly contributed to intrinsic scatter. However, we could not detect any systematic change of the correlation with the subclass of the Seyfert type or the Eddington ratio. Finally, we compare the dust reverberation radius with the near-infrared interferometric radius of the dust torus and the reverberation radius of broad Balmer emission lines. The interferometric radius in the K band was found to be systematically larger than the dust reverberation radius in the same band by about a factor of two, which could be interpreted by the difference between the flux-weighted radius and the response-weighted radius of the innermost dust torus. The reverberation radius of the broad Balmer emission lines was found to be systematically smaller than the dust reverberation radius by about a factor of 4-5, which strongly supports the unified scheme of the Seyfert type of active galactic nuclei. (Abridged)
We present the results of a dust-reverberation survey of quasars at redshifts z<0.6. We found a delayed response of the K-band flux variation after the optical flux variation in 25 out of 31 targets, and obtained the lag time between them for 22 targ ets. Combined with the results for nearby Seyfert galaxies, we provide the largest homogeneous collection of K-band dust-reverberation data for 36 type 1 active galactic nuclei (AGNs). This doubles the sample and includes the most distant AGN and the largest lag so far measured. We estimated the optical luminosity of the AGN component of each target using three different methods: spectral decomposition, the flux-variation-gradient method, and image decomposition. We found a strong correlation between the reverberation radius for the innermost dust torus and the optical luminosity over a range of approximately four orders of magnitude in luminosity, as is already known for Seyfert galaxies. We estimated the luminosity distances of the AGNs based on their dust-reverberation lags, and found that the data in the redshift-distance diagram are consistent with the current standard estimates of the cosmological parameters. We also present the radius-luminosity relations for isotropic luminosity indicators such as the hard X-ray (14--195 keV), [OIV] 25.89 um, and mid-infrared (12 um) continuum luminosities, which are applicable to obscured AGNs.
The long-term optical and near infrared monitoring observations for a type 1 act ive galactic nucleus NGC 4151 were carried out for six years from 2001 to 2006 b y using the MAGNUM telescope, and delayed response of flux variations in the $K(2.2mu m) $ band to those in the $V(0.55mu m)$ band was clearly detected. Based on cross correlation analysis, we precisely measured a lag time $Delta t$ for eight separate periods, and we found that $Delta t$ is not constant changing be tween 30 and 70 days during the monitoring period. Since $Delta t$ is the ligh t travel time from the central energy source out to the surrounding dust torus, this is the first convincing evidence that the inner radius of dust torus did ch ange in an individual AGN. In order to relate such a change of $Delta t$ with a change of AGN luminosity $L$, we presented a method of taking an average of th e observed $V$-band fluxes that corresponds to the measured value of $Delta t$, and we found that the time-changing track of NGC 4151 in the $Delta t$ versus $L$ diagram during the monitoring period deviates from the relation of $Delta t propto L^{0.5}$ expected from dust reverberation. This result, combined with t he elapsed time from period to period for which $Delta t$ was measured, indicat es that the timescale of dust formation is about one year, which should be taken into account as a new constraint in future studies of dust evolution in AGNs.
66 - H. Landt 2019
We have recently initiated the first spectroscopic dust reverberation programme on active galactic nuclei (AGN) in the near-infrared. Spectroscopy enables measurement of dust properties, such as flux, temperature and covering factor, with higher prec ision than photometry. In particular, it enables measurement of both luminosity-based dust radii and dust response times. Here we report results from a one-year campaign on NGC 5548. The hot dust responds to changes in the irradiating flux with a lag time of ~70 light-days, similar to what was previously found in photometric reverberation campaigns. The mean and rms spectra are similar, implying that the same dust component dominates both the emission and the variations. The dust lag time is consistent with the luminosity-based dust radius only if we assume a wavelength-independent dust emissivity-law, i.e. a blackbody, which is appropriate for grains of large sizes (of a few microns). For such grains the dust temperature is ~1450 K. Therefore, silicate grains have most likely evaporated and carbon is the main chemical component. But the hot dust is not close to its sublimation temperature, contrary to popular belief. This is further supported by our observation of temperature variations largely consistent with a heating/cooling process. Therefore, the inner dust-free region is enlarged and the dusty torus rather a dusty wall, whose inner radius is expected to be luminosity-invariant. The dust-destruction mechanism that enlarges the dust-free region seems to partly affect also the dusty region. We observe a cyclical decrease in dust mass with implied dust reformation times of ~5-6 months.
Reverberation-mapping-based scaling relations are often used to estimate the masses of black holes from single-epoch spectra of AGN. While the radius-luminosity relation that is the basis of these scaling relations is determined using reverberation m apping of the H$beta$ line in nearby AGN, the scaling relations are often extended to use other broad emission lines, such as MgII, in order to get black hole masses at higher redshifts when H$beta$ is redshifted out of the optical waveband. However, there is no radius-luminosity relation determined directly from MgII. Here, we present an attempt to perform reverberation mapping using MgII in the well-studied nearby Seyfert 1, NGC 5548. We used Swift to obtain UV grism spectra of NGC 5548 once every two days from April to September 2013. Concurrent photometric UV monitoring with Swift provides a well determined continuum lightcurve that shows strong variability. The MgII emission line, however, is not strongly correlated with the continuum variability, and there is no significant lag between the two. We discuss these results in the context of using MgII scaling relations to estimate high-redshift black hole masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا