ﻻ يوجد ملخص باللغة العربية
In the high-dimensional sparse modeling literature, it has been crucially assumed that the sparsity structure of the model is homogeneous over the entire population. That is, the identities of important regressors are invariant across the population and across the individuals in the collected sample. In practice, however, the sparsity structure may not always be invariant in the population, due to heterogeneity across different sub-populations. We consider a general, possibly non-smooth M-estimation framework, allowing a possible structural change regarding the identities of important regressors in the population. Our penalized M-estimator not only selects covariates but also discriminates between a model with homogeneous sparsity and a model with a structural change in sparsity. As a result, it is not necessary to know or pretest whether the structural change is present, or where it occurs. We derive asymptotic bounds on the estimation loss of the penalized M-estimators, and achieve the oracle properties. We also show that when there is a structural change, the estimator of the threshold parameter is super-consistent. If the signal is relatively strong, the rates of convergence can be further improved and asymptotic distributional properties of the estimators including the threshold estimator can be established using an adaptive penalization. The proposed methods are then applied to quantile regression and logistic regression models and are illustrated via Monte Carlo experiments.
Change-points are a routine feature of big data observed in the form of high-dimensional data streams. In many such data streams, the component series possess group structures and it is natural to assume that changes only occur in a small number of a
This paper analyses the use of bootstrap methods to test for parameter change in linear models estimated via Two Stage Least Squares (2SLS). Two types of test are considered: one where the null hypothesis is of no change and the alternative hypothesi
For data with high-dimensional covariates but small to moderate sample sizes, the analysis of single datasets often generates unsatisfactory results. The integrative analysis of multiple independent datasets provides an effective way of pooling infor
We describe a formal approach based on graphical causal models to identify the root causes of the change in the probability distribution of variables. After factorizing the joint distribution into conditional distributions of each variable, given its
When the Stable Unit Treatment Value Assumption (SUTVA) is violated and there is interference among units, there is not a uniquely defined Average Treatment Effect (ATE), and alternative estimands may be of interest, among them average unit-level dif