ترغب بنشر مسار تعليمي؟ اضغط هنا

A Simple Physical Model for the Gas Distribution in Galaxy Clusters

68   0   0.0 ( 0 )
 نشر من قبل Anna Patej
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dominant baryonic component of galaxy clusters is hot gas whose distribution is commonly probed through X-ray emission arising from thermal bremsstrahlung. The density profile thus obtained has been traditionally modeled with a beta-profile, a simple function with only three parameters. However, this model is known to be insufficient for characterizing the range of cluster gas distributions, and attempts to rectify this shortcoming typically introduce additional parameters to increase the fitting flexibility. We use cosmological and physical considerations to obtain a family of profiles for the gas with fewer parameters than the beta-model but which better accounts for observed gas profiles over wide radial intervals.

قيم البحث

اقرأ أيضاً

We present an analytic parametric model to describe the baryonic and dark matter distributions in clusters of galaxies with spherical symmetry. It is assumed that the dark matter density follows a Navarro, Frenk and White (NFW) profile and that the g as pressure is described by a generalised NFW (GNFW) profile. By further demanding hydrostatic equilibrium and that the gas fraction is small throughout the cluster, one obtains unique functional forms, dependent on basic cluster parameters, for the radial profiles of all the properties of interest in the cluster. We show these profiles are consistent both with numerical simulations and multi-wavelength observations of clusters. We also use our model to analyse six simulated SZ clusters as well as A611 SZ data from the Arcminute Microkelvin Imager (AMI). In each case, we derive the radial profile of the enclosed total mass and the gas pressure and show that the results are in good agreement with our model prediction.
107 - D. Eckert , F. Vazza , S. Ettori 2011
We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuth al symmetry and gas clumping in the outer regions of galaxy clusters. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond sim r500. Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond sim 0.3r200, which we explain by a different distribution of the gas in the two classes. Beyond sim r500, galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. [Abridged]
We demonstrate that all properties of the hot X-ray emitting gas in galaxy clusters are completely determined by the underlying dark matter (DM) structure. Apart from the standard conditions of spherical symmetry and hydrostatic equilibrium for the g as, our proof is based on the Jeans equation for the DM and two simple relations which have recently emerged from numerical simulations: the equality of the gas and DM temperatures, and the almost linear relation between the DM velocity anisotropy profile and its density slope. For DM distributions described by the NFW or the Sersic profiles, the resulting gas density profile, the gas-to-total-mass ratio profile, and the entropy profile are all in good agreement with X-ray observations. All these profiles are derived using zero free parameters. Our result allows us to predict the X-ray luminosity profile of a cluster in terms of its DM content alone. As a consequence, a new strategy becomes available to constrain the DM morphology in galaxy clusters from X-ray observations. Our results can also be used as a practical tool for creating initial conditions for realistic cosmological structures to be used in numerical simulations.
Cluster mass profiles are tests of models of structure formation. Only two current observational methods of determining the mass profile, gravitational lensing and the caustic technique, are independent of the assumption of dynamical equilibrium. Bot h techniques enable determination of the extended mass profile at radii beyond the virial radius. For 19 clusters, we compare the mass profile based on the caustic technique with weak lensing measurements taken from the literature. This comparison offers a test of systematic issues in both techniques. Around the virial radius, the two methods of mass estimation agree to within about 30%, consistent with the expected errors in the individual techniques. At small radii, the caustic technique overestimates the mass as expected from numerical simulations. The ratio between the lensing profile and the caustic mass profile at these radii suggests that the weak lensing profiles are a good representation of the true mass profile. At radii larger than the virial radius, the lensing mass profile exceeds the caustic mass profile possibly as a result of contamination of the lensing profile by large-scale structures within the lensing kernel. We highlight the case of the closely neighboring clusters MS0906+11 and A750 to illustrate the potential seriousness of contamination of the the weak lensing signal by unrelated structures.
131 - J. R. Allison 2010
We present a parameterized model of the intra-cluster medium that is suitable for jointly analysing pointed observations of the Sunyaev-Zeldovich (SZ) effect and X-ray emission in galaxy clusters. The model is based on assumptions of hydrostatic equi librium, the Navarro, Frenk and White (NFW) model for the dark matter, and a softened power law profile for the gas entropy. We test this entropy-based model against high and low signal-to-noise mock observations of a relaxed and recently-merged cluster from N-body/hydrodynamic simulations, using Bayesian hyper-parameters to optimise the relative statistical weighting of the mock SZ and X-ray data. We find that it accurately reproduces both the global values of the cluster temperature, total mass and gas mass fraction (fgas), as well as the radial dependencies of these quantities outside of the core (r > kpc). For reference we also provide a comparison with results from the single isothermal beta model. We confirm previous results that the single isothermal beta model can result in significant biases in derived cluster properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا