ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Applicability of ISO 9564 PIN based Authentication to Closed-Loop Mobile Payment Systems

183   0   0.0 ( 0 )
 نشر من قبل Sugata Sanyal
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Payment transactions initiated through a mobile device are growing and security concerns must be ad-dressed. People coming from payment card industry often talk passionately about porting ISO 9564 PIN standard based authentication in open-loop card payment to closed-loop mobile financial transactions and certification of closed-loop payment product or solution against this standard. In reality, so far this standard has not been adopted in closed-loop mobile payment authentication and applicability of this ISO standard must be studied carefully before adoption. The authors do a critical analysis of the applicability of this ISO specification and makes categorical statement about relevance of compliance to closed-loop mobile payment. Security requirements for authentication in closed-loop mobile payment systems are not standardized through ISO 9564 standard, Common Criteria, etc. Since closed-loop mobile payment is a relatively new field, the authors make a case for Common Criteria Recognition Agreement (CCRA) or other standards organization to push for publication of a mobile device-agnostic Protection Profile or standard for it, incorporating the suggested authentication approaches.



قيم البحث

اقرأ أيضاً

Cash payment is still king in several markets, accounting for more than 90 of the payments in almost all the developing countries. The usage of mobile phones is pretty ordinary in this present era. Mobile phones have become an inseparable friend for many users, serving much more than just communication tools. Every subsequent person is heavily relying on them due to multifaceted usage and affordability. Every person wants to manage his/her daily transactions and related issues by using his/her mobile phone. With the rise and advancements of mobile-specific security, threats are evolving as well. In this paper, we provide a survey of various security models for mobile phones. We explore multiple proposed models of the mobile payment system (MPS), their technologies and comparisons, payment methods, different security mechanisms involved in MPS, and provide analysis of the encryption technologies, authentication methods, and firewall in MPS. We also present current challenges and future directions of mobile phone security.
In order to address the increasing compromise of user privacy on mobile devices, a Fuzzy Logic based implicit authentication scheme is proposed in this paper. The proposed scheme computes an aggregate score based on selected features and a threshold in real-time based on current and historic data depicting user routine. The tuned fuzzy system is then applied to the aggregated score and the threshold to determine the trust level of the current user. The proposed fuzzy-integrated implicit authentication scheme is designed to: operate adaptively and completely in the background, require minimal training period, enable high system accuracy while provide timely detection of abnormal activity. In this paper, we explore Fuzzy Logic based authentication in depth. Gaussian and triangle-based membership functions are investigated and compared using real data over several weeks from different Android phone users. The presented results show that our proposed Fuzzy Logic approach is a highly effective, and viable scheme for lightweight real-time implicit authentication on mobile devices.
This paper introduces a closed-loop frequency analysis tool for reset control systems. To begin with sufficient conditions for the existence of the steady-state response for a closed-loop system with a reset element and driven by periodic references are provided. It is then shown that, under specific conditions, such a steady-state response for periodic inputs is periodic with the same period as the input. Furthermore, a framework to obtain the steady-state response and to define a notion of closed-loop frequency response, including high order harmonics, is presented. Finally, pseudo-sensitivities for reset control systems are defined. These simplify the analysis of this class of systems and allow a direct software implementation of the analysis tool. To show the effectiveness of the proposed analysis method the position control problem for a precision positioning stage is studied. In particular, comparison with the results achieved using methods based on the Describing Function shows that the proposed method achieves superior closed-loop performance.
This paper analyses the various authentication systems implemented for enhanced security and private re-position of an individuals log-in credentials. The first part of the paper describes the multi-factor authentication (MFA) systems, which, though not applicable to the field of Internet of Things, provides great security to a users credentials. MFA is followed by a brief description of the working mechanism of interaction of third party clients with private resources over the OAuth protocol framework and a study of the delegation based authentication system in IP-based IoT.
Given the nature of mobile devices and unlock procedures, unlock authentication is a prime target for credential leaking via shoulder surfing, a form of an observation attack. While the research community has investigated solutions to minimize or pre vent the threat of shoulder surfing, our understanding of how the attack performs on current systems is less well studied. In this paper, we describe a large online experiment (n=1173) that works towards establishing a baseline of shoulder surfing vulnerability for current unlock authentication systems. Using controlled video recordings of a victim entering in a set of 4- and 6-length PINs and Android unlock patterns on different phones from different angles, we asked participants to act as attackers, trying to determine the authentication input based on the observation. We find that 6-digit PINs are the most elusive attacking surface where a single observation leads to just 10.8% successful attacks, improving to 26.5% with multiple observations. As a comparison, 6-length Android patterns, with one observation, suffered 64.2% attack rate and 79.9% with multiple observations. Removing feedback lines for patterns improves security from 35.3% and 52.1% for single and multiple observations, respectively. This evidence, as well as other results related to hand position, phone size, and observation angle, suggests the best and worst case scenarios related to shoulder surfing vulnerability which can both help inform users to improve their security choices, as well as establish baselines for researchers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا