ترغب بنشر مسار تعليمي؟ اضغط هنا

On the intermediate-redshift central stellar mass-halo mass relation, and implications for the evolution of the most massive galaxies since z~1

126   0   0.0 ( 0 )
 نشر من قبل Francesco Shankar Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Francesco Shankar




اسأل ChatGPT حول البحث

The stellar mass-halo mass relation is a key constraint in all semi-analytic, numerical, and semi-empirical models of galaxy formation and evolution. However, its exact shape and redshift dependence remain debated. Several recent works support a relation in the local Universe steeper than previously thought. Based on the comparisons with a variety of data on massive central galaxies, we show that this steepening holds up to z~1, for stellar masses Mstar>2e11 Msun. Specifically, we find significant evidence for a high-mass end slope of beta>0.35-0.70, instead of the usual beta~0.20-0.30 reported by a number of previous results. When including the independent constraints from the recent BOSS clustering measurements, the data, independent of any systematic errors in stellar masses, tend to favor a model with a very small scatter (< 0.15 dex) in stellar mass at fixed halo mass, in the redshift range z < 0.8 and for Mstar>3e11 Msun, suggesting a close connection between massive galaxies and host halos even at relatively recent epochs. We discuss the implications of our results with respect to the evolution of the most massive galaxies since z~1.



قيم البحث

اقرأ أيضاً

We present the brightest cluster galaxies (BCGs) catalog for SPectroscoic IDentification of eROSITA Sources (SPIDERS) DR14 cluster program value-added catalog. We list the 416 BCGs identified as part of this process, along with their stellar mass, st ar formation rates, and morphological properties. We identified the BCGs based on the available spectroscopic data from SPIDERS and photometric data from SDSS. We computed stellar masses and SFRs of the BCGs on the basis of SDSS, WISE, and GALEX photometry using spectral energy distribution fitting. Morphological properties for all BCGs were derived by Sersic profile fitting using the software package SIGMA in different optical bands (g,r,i). We combined this catalog with the BCGs of galaxy groups and clusters extracted from the deeper AEGIS, CDFS, COSMOS, XMM-CFHTLS, and XMM-XXL surveys to study the stellar mass - halo mass relation using the largest sample of X-ray groups and clusters known to date. This result suggests that the mass growth of the central galaxy is controlled by the hierarchical mass growth of the host halo. We find a strong correlation between the stellar mass of BCGs and the mass of their host halos. This relation shows no evolution since z $sim$ 0.65. We measure a mean scatter of 0.21 and 0.25 for the stellar mass of BCGs in a given halo mass at low ( $0.1<z < 0.3$ ) and high ( $0.3<z<0.65$ ) redshifts, respectively. We further demonstrate that the BCG mass is covariant with the richness of the host halos in the very X-ray luminous systems. We also find evidence that part of the scatter between X-ray luminosity and richness can be reduced by considering stellar mass as an additional variable.
122 - Kevin Bundy 2009
Using deep infrared observations conducted with the MOIRCS on the Subaru Telescope in GOODS-N combined with public surveys in GOODS-S, we investigate the dependence on stellar mass, M_*, and galaxy type of the close pair fraction (5 kpc < r < 20 kpc) and implied merger rate. In common with some recent studies we find that the fraction of paired systems that could result in major mergers is low (~4%) and does not increase significantly with redshift to z~1.2, with (1+z)^{1.6 pm 1.6}. Our key finding is that massive galaxies with M_* > 1E11 Msun are more likely to host merging companions than less massive systems (M_* ~ 1E10 Msun). We find evidence for a higher pair fraction for red, spheroidal hosts compared to blue, late-type systems, in line with expectations based on clustering at small scales. So-called dry mergers between early-type galaxies represent nearly 50% of close pairs with M_* > 3E10 Msun at z~0.5, but less than 30% at z~1. This result can be explained by the increasing abundance of red, early-type galaxies at these masses. We compare the volumetric merger rate of galaxies with different masses to mass-dependent trends in galaxy evolution, finding that major mergers cannot fully account for the formation of spheroidal galaxies since z~1. In terms of mass assembly, major mergers contribute little to galaxy growth below M_* ~ 3E10 Msun but are more significant among galaxies with M_* > 1E11 Msun, 30% of which have undergone mostly dry mergers over the observed redshift range. Overall, the relatively more rapid coalescence of high mass galaxies mirrors the expected hierarchical growth of halos and is consistent with recent model predictions, even if the downsizing of star formation and morphological evolution involves additional physical processes.
We measure the gas-phase oxygen abundances of ~3000 star-forming galaxies at z=0.05-0.75 using optical spectrophotometry from the AGN and Galaxy Evolution Survey (AGES), a spectroscopic survey of I_AB<20.45 galaxies over 7.9 deg^2 in the NOAO Deep Wi de Field Survey (NDWFS) Bootes field. We use state-of-the-art techniques to measure the nebular emission lines and stellar masses, and explore and quantify several potential sources of systematic error, including the choice of metallicity diagnostic, aperture bias, and contamination from unidentified active galactic nuclei (AGN). Combining volume-limited AGES samples in six independent redshift bins and ~75,000 star-forming galaxies with r_AB<17.6 at z=0.05-0.2 selected from the Sloan Digital Sky Survey (SDSS) that we analyze in the identical manner, we measure the evolution of the stellar mass-metallicity (M-Z) between z=0.05 and z=0.75. We find that at fixed stellar mass galaxies at z~0.7 have just 30%-60% the metal content of galaxies at the present epoch, where the uncertainty is dominated by the strong-line method used to measure the metallicity. Moreover, we find no statistically significant evidence that the M-Z relation evolves in a mass-dependent way for M=10^9.8-10^11 Msun star-forming galaxies. Thus, for this range of redshifts and stellar masses the M-Z relation simply shifts toward lower metallicity with increasing redshift without changing its shape.
We quantify evolution in the cluster scale stellar mass - halo mass (SMHM) relations parameters using 2323 clusters and brightest central galaxies (BCGs) over the redshift range $0.03 le z le 0.60$. The precision on inferred SMHM parameters is improv ed by including the magnitude gap ($rm m_{gap}$) between the BCG and fourth brightest cluster member (M14) as a third parameter in the SMHM relation. At fixed halo mass, accounting for $rm m_{gap}$, through a stretch parameter, reduces the SMHM relations intrinsic scatter. To explore this redshift range, we use clusters, BCGs, and cluster members identified using the Sloan Digital Sky Survey C4 and redMaPPer cluster catalogs and the Dark Energy Survey redMaPPer catalog. Through this joint analysis, we detect no systematic differences in BCG stellar mass, $rm m_{gap}$, and cluster mass (inferred from richness) between the datsets. We utilize the Pareto function to quantify each parameters evolution. We confirm prior findings of negative evolution in the SMHM relations slope (3.5$sigma$) and detect negative evolution in the stretch parameter (4.0$sigma$) and positive evolution in the offset parameter (5.8$sigma$). This observed evolution, combined with the absence of BCG growth, when stellar mass is measured within 50kpc, suggests that this evolution results from changes in the clusters $rm m_{gap}$. For this to occur, late-term growth must be in the intra-cluster light surrounding the BCG. We also compare the observed results to Illustris TNG 300-1 cosmological hydrodynamic simulations and find modest qualitative agreement. However, the simulations lack the evolutionary features detected in the real data.
142 - Sarah H. Miller 2013
A number of recent challenges to the standard Lambda-CDM paradigm relate to discrepancies that arise in comparing the abundance and kinematics of local dwarf galaxies with the predictions of numerical simulations. Such arguments rely heavily on the a ssumption that the local dwarf and satellite galaxies form a representative distribution in terms of their stellar-to-halo mass ratios. To address this question, we present new, deep spectroscopy using DEIMOS on Keck for 82 low mass (10^7-10^9 solar masses) star-forming galaxies at intermediate redshift (z=0.2-1). For 50 percent of these we are able to determine resolved rotation curves using nebular emission lines and thereby construct the stellar mass Tully-Fisher relation to masses as low as 10^7 solar masses. Using scaling relations determined from weak lensing data, we convert this to a stellar-to-halo mass (SHM) relation for comparison with abundance matching predictions. We find a discrepancy between the propagated predictions from simulations compared to our observations, and suggest possible reasons for this as well as future tests that will be more effective.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا