ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence of 2-parameter crossings, with applications

29   0   0.0 ( 0 )
 نشر من قبل Jonathan Williams
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A Morse 2-function is a generic smooth map from a manifold M of arbitrary finite dimension to a surface B. Its critical set maps to an immersed collection of cusped arcs in B. The aim of this paper is to explain exactly when it is possible to move these arcs around in B by a homotopy and to give a library of examples when M is a closed 4-manifold. The last two sections give applications to the theory of crown diagrams of smooth 4-manifolds.

قيم البحث

اقرأ أيضاً

We introduce the multiplexing of a crossing, replacing a classical crossing of a virtual link diagram with multiple crossings which is a mixture of classical and virtual. For integers $m_{i}$ $(i=1,ldots,n)$ and an ordered $n$-component virtual link diagram $D$, a new virtual link diagram $D(m_{1},ldots,m_{n})$ is obtained from $D$ by the multiplexing of all crossings. For welded isotopic virtual link diagrams $D$ and $D$, $D(m_{1},ldots,m_{n})$ and $D(m_{1},ldots,m_{n})$ are welded isotopic. From the point of view of classical link theory, it seems very interesting that $D(m_{1},ldots,m_{n})$ could not be welded isotopic to a classical link diagram even if $D$ is a classical one, and new classical link invariants are expected from known welded link invariants via the multiplexing of crossings.
We prove the first polynomial bound on the number of monotonic homotopy moves required to tighten a collection of closed curves on any compact orientable surface, where the number of crossings in the curve is not allowed to increase at any time durin g the process. The best known upper bound before was exponential, which can be obtained by combining the algorithm of de Graaf and Schrijver [J. Comb. Theory Ser. B, 1997] together with an exponential upper bound on the number of possible surface maps. To obtain the new upper bound we apply tools from hyperbolic geometry, as well as operations in graph drawing algorithms---the cluster and pipe expansions---to the study of curves on surfaces. As corollaries, we present two efficient algorithms for curves and graphs on surfaces. First, we provide a polynomial-time algorithm to convert any given multicurve on a surface into minimal position. Such an algorithm only existed for single closed curves, and it is known that previous techniques do not generalize to the multicurve case. Second, we provide a polynomial-time algorithm to reduce any $k$-terminal plane graph (and more generally, surface graph) using degree-1 reductions, series-parallel reductions, and $Delta Y$-transformations for arbitrary integer $k$. Previous algorithms only existed in the planar setting when $k le 4$, and all of them rely on extensive case-by-case analysis based on different values of $k$. Our algorithm makes use of the connection between electrical transformations and homotopy moves, and thus solves the problem in a unified fashion.
The second author and Hara introduced the notion of an essential tribranched surface that is a generalisation of the notion of an essential embedded surface in a 3-manifold. We show that any 3-manifold for which the fundamental group has at least rank four admits an essential tribranched surface.
114 - Eaman Eftekhary 2013
We show that if a prime homology sphere has the same Floer homology as the standard three-sphere, it does not contain any incompressible tori.
We address the question of determining which mapping class groups of infinite-type surfaces admit nonelementary continuous actions on hyperbolic spaces. More precisely, let $Sigma$ be a connected, orientable surface of infinite type with tame endsp ace whose mapping class group is generated by a coarsely bounded subset. We prove that $mathrm{Map}(Sigma)$ admits a continuous nonelementary action on a hyperbolic space if and only if $Sigma$ contains a finite-type subsurface which intersects all its homeomorphic translates. When $Sigma$ contains such a nondisplaceable subsurface $K$ of finite type, the hyperbolic space we build is constructed from the curve graphs of $K$ and its homeomorphic translates via a construction of Bestvina, Bromberg and Fujiwara. Our construction has several applications: first, the second bounded cohomology of $mathrm{Map}(Sigma)$ contains an embedded $ell^1$; second, using work of Dahmani, Guirardel and Osin, we deduce that $mathrm{Map}(Sigma)$ contains nontrivial normal free subgroups (while it does not if $Sigma$ has no nondisplaceable subsurface of finite type), has uncountably many quotients and is SQ-universal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا