ﻻ يوجد ملخص باللغة العربية
We compute the spectrum of scalar models with a general coupling to the scalar curvature. We find that the perturbative states of these theories are given by two massive spin-0 modes in addition to one massless spin-2 state. This latter mode can be identified with the standard graviton field. Indeed, we are able to define an Einstein frame, where the dynamics of the massless spin-2 graviton is the one associated with the Einstein-Hilbert action. We also explore the interactions of all these degrees of freedom in the mentioned frame, since part of the coupling structure can be anticipated by geometrical arguments.
We analyze junction conditions at a null or non-null hypersurface $Sigma$ in a large class of scalar-tensor theories in arbitrary $n(ge 3)$ dimensions. After showing that the metric and a scalar field must be continuous at $Sigma$ as the first juncti
We study the cosmology on the Friedmann-Lemaitre-Robertson-Walker background in scalar-vector-tensor theories with a broken $U(1)$ gauge symmetry. For parity-invariant interactions arising in scalar-vector-tensor theories with second-order equations
The aim of this paper is to study the stability of soliton-like static solutions via non-linear simulations in the context of a special class of massive tensor-multi-scalar-theories of gravity whose target space metric admits Killing field(s) with a
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2+2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first a
The detection of gravitational waves (GWs) propagating through cosmic structures can provide invaluable information on the geometry and content of our Universe, as well as on the fundamental theory of gravity. In order to test possible departures fro