ﻻ يوجد ملخص باللغة العربية
Let S be a nonsingular projective K3 surface. Motivated by the study of the Gromov-Witten theory of the Hilbert scheme of points of S, we conjecture a formula for the Gromov-Witten theory (in all curve classes) of the Calabi-Yau 3-fold S x E where E is an elliptic curve. In the primitive case, our conjecture is expressed in terms of the Igusa cusp form chi_{10} and matches a prediction via heterotic duality by Katz, Klemm, and Vafa. In imprimitive cases, our conjecture suggests a new structure for the complete theory of descendent integration for K3 surfaces. Via the Gromov-Witten/Pairs correspondence, a conjecture for the reduced stable pairs theory of S x E is also presented. Speculations about the motivic stable pairs theory of S x E are made. The reduced Gromov-Witten theory of the Hilbert scheme of points of S is much richer than S x E. The 2-point function of Hilb(S,d) determines a matrix with trace equal to the partition function of S x E. A conjectural form for the full matrix is given.
We work on a projective threefold $X$ which satisfies the Bogomolov-Gieseker conjecture of Bayer-Macr`i-Toda, such as $mathbb P^3$ or the quintic threefold. We prove certain moduli spaces of 2-dimensional torsion sheaves on $X$ are smooth bundles o
We slightly extend a previous result concerning the injectivity of a map of moduli spaces and we use this result to construct curves whose Brill-Noether loci have unexpected dimension.
For a nonsingular projective 3-fold $X$, we define integer invariants virtually enumerating pairs $(C,D)$ where $Csubset X$ is an embedded curve and $Dsubset C$ is a divisor. A virtual class is constructed on the associated moduli space by viewing a
In this article, we prove that a tame twisted K3 surface over an algebraically closed field of positive characteristic has only finitely many tame twisted Fourier-Mukai partners and we give a counting formula in case we have an ordinary tame untwiste
The slope of the moduli space of genus g curves is bounded from below by 60/(g+4) via a descendent calculation.