ﻻ يوجد ملخص باللغة العربية
The standard, or fast, solutions of m-CAK line-driven wind theory cannot account for slowly outflowing disks like the ones that surround Be stars. It has been previously shown that there exists another family of solutions --- the $Omega$-slow solutions --- that is characterized by much slower terminal velocities and higher mass-loss rates. We have solved the one-dimensional m-CAK hydrodynamical equation of rotating radiation-driven winds for this latter solution, starting from standard values of the line force parameters ($alpha$, $k$, and $delta$), and then systematically varying the values of $alpha$ and $k$. Terminal velocities and mass-loss rates that are in good agreement with those found in Be stars are obtained from the solutions with lower $alpha$ and higher $k$ values. Furthermore, the equatorial densities of such solutions are comparable to those that are typically assumed in ad hoc models. For very high values of $k$, we find that the wind solutions exhibit a new kind of behavior.
As the disk formation mechanism(s) in Be stars is(are) as yet unknown, we investigate the role of rapidly rotating radiation-driven winds in this process. We implemented the effects of high stellar rotation on m-CAK models accounting for: the shape o
Accurate mass-loss rates and terminal velocities from massive stars winds are essential to obtain synthetic spectra from radiative transfer calculations and to determine the evolutionary path of massive stars. From a theoretical point of view, analyt
Massive stars present strong stellar that which are described by the radiation driven wind theory. Accurate mass-loss rates are necessary to properly describe the stellar evolution across the Hertzsprung--Russel Diagram. We present a self-consisten
Hot massive stars present strong stellar winds that are driven by absorption, scattering and re-emission of photons by the ions of the atmosphere (textit{line-driven winds}). A better comprehension of this phenomenon, and a more accurate calculation
We present two self-consistent procedures that couple the hydrodynamics with calculations of the line-force in the frame of radiation wind theory. These procedures give us the line-force parameters, the velocity field, and the mass-loss rate. The fir