ترغب بنشر مسار تعليمي؟ اضغط هنا

The High Time Resolution Universe Survey - XI. Discovery of five recycled pulsars and the optical detectability of survey white dwarf companions

42   0   0.0 ( 0 )
 نشر من قبل Samuel Bates
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery of a further five recycled pulsar systems in the mid-Galactic latitude portion of the High Time Resolution Universe (HTRU) Survey. The pulsars have rotational periods ranging from 2 ms to 66 ms, and four are in binary systems with orbital periods between 10.8 hours and 9.0 days. Three of these binary systems are particularly interesting; PSR J1227-6208 has a pulse period of 34.5 ms and the highest mass function of all pulsars with near-circular orbits. The circular orbit suggests that the companion is not another neutron star, so future timing experiments may reveal one of the heaviest white dwarfs ever found ($>$ 1.3 M$_odot$). Timing observations of PSR J1431$-$4715 indicate that it is eclipsed by its companion which has a mass indicating it belongs to the redback class of eclipsing millisecond pulsars. PSR J1653-2054 has a companion with a minimum mass of only $0.08$ M$_odot$, placing it among the class of pulsars with low-mass companions. Unlike the majority of such systems, however, no evidence of eclipses is seen at 1.4 GHz.

قيم البحث

اقرأ أيضاً

We present the discovery of 5 millisecond pulsars found in the mid-Galactic latitude portion of the High Time Resolution Universe (HTRU) Survey. The pulsars have rotational periods from ~2.3 to ~7.5 ms, and all are in binary systems with orbital peri ods ranging from ~0.3 to ~150 d. In four of these systems, the most likely companion is a white dwarf, with minimum masses of ~0.2 Solar Masses. The other pulsar, J1731-1847, has a very low mass companion and exhibits eclipses, and is thus a member of the black widow class of pulsar binaries. These eclipses have been observed in bands centred near frequencies of 700, 1400 and 3000 MHz, from which measurements have been made of the electron density in the eclipse region. These measurements have been used to examine some possible eclipse mechanisms. The eclipse and other properties of this source are used to perform a comparison with the other known eclipsing and black widow pulsars. These new discoveries occupy a short-period and high-dispersion measure (DM) region of parameter space, which we demonstrate is a direct consequence of the high time and frequency resolution of the HTRU survey. The large implied distances to our new discoveries makes observation of their companions unlikely with both current optical telescopes and the Fermi Gamma-ray Space Telescope. The extremely circular orbits make any advance of periastron measurements highly unlikely. No relativistic Shapiro delays are obvious in any of the systems, although the low flux densities would make their detection difficult unless the orbits were fortuitously edge-on.
We report the discovery and the results of follow-up timing observations of PSR J2045+3633 and PSR J2053+4650, two binary pulsars found in the Northern High Time Resolution Universe pulsar survey being carried out with the Effelsberg radio telescope. Having spin periods of 31.7 ms and 12.6 ms respectively, and both with massive white dwarf companions, $M_{c}, > , 0.8, M_{odot}$, the pulsars can be classified as mildly recycled. PSR J2045+3633 is remarkable due to its orbital period (32.3 days) and eccentricity $e, = , 0.01721244(5)$ which is among the largest ever measured for this class. After almost two years of timing the large eccentricity has allowed the measurement of the rate of advance of periastron at the 5-$sigma$ level, 0.0010(2)$^circ~rm yr^{-1}$. Combining this with a detection of the orthometric amplitude of the Shapiro delay, we obtained the following constraints on the component masses (within general relativity): $M_{p}, = , 1.33^{+0.30}_{-0.28}, M_{odot}$, and $M_{c}, = , 0.94^{+0.14}_{-0.13}, M_{odot}$. PSR J2053+4650 has a 2.45-day circular orbit inclined to the plane of the sky at an angle $i, = , 85.0^{+0.8}_{-0.9},{^circ}$. In this nearly edge-on case the masses can be obtained from the Shapiro delay alone. Our timing observations resulted in a significant detection of this effect giving: $M_{p}, = , 1.40^{+0.21}_{-0.18}, M_{odot}$, and $M_{c}, = , 0.86^{+0.07}_{-0.06}, M_{odot}$.
We present a polarimetric analysis of 49 long-period pulsars discovered as part of the High Time Resolution Universe (HTRU) southern survey. The sources exhibit the typical characteristics of old pulsars, with low fractional linear and circular polar isation and narrow, multicomponent profiles. Although the position angle swings are generally complex, for two of the analysed pulsars (J1622-3751 and J1710-2616) we obtained an indication of the geometry via the rotating vector model. We were able to determine a value of the rotation measure (RM) for 34 of the sources which, when combined with their dispersion measures (DM), yields an integrated magnetic field strength along the line of sight. With the data presented here, the total number of values of RM associated to pulsars discovered during the HTRU southern survey sums to 51. The RMs are not consistent with the hypothesis of a counter-clockwise direction of the Galactic magnetic field within an annulus included between 4 and 6 kpc from the Galactic centre. A partial agreement with a counter-clockwise sense of the Galactic magnetic field within the spiral arms is however found in the area of the Carina-Sagittarius arm.
We have performed a new search for radio pulsars in archival data of the intermediate and high Galactic latitude parts of the Southern High Time Resolution Universe pulsar survey. This is the first time the entire dataset has been searched for binary pulsars, an achievement enabled by GPU-accelerated dedispersion and periodicity search codes nearly 50 times faster than the previously used pipeline. Candidate selection was handled entirely by a Machine Learning algorithm, allowing for the assessment of 17.6 million candidates in a few person-days. We have also introduced an outlier detection algorithm for efficient radio-frequency interference (RFI) mitigation on folded data, a new approach that enabled the discovery of pulsars previously masked by RFI. We discuss implications for future searches, particularly the importance of expanding work on RFI mitigation to improve survey completeness. In total we discovered 23 previously unknown sources, including 6 millisecond pulsars and at least 4 pulsars in binary systems. We also found an elusive but credible redback candidate that we have yet to confirm.
We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyt e-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially-coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly-relativistic short-orbit binary systems, covering a parameter space including potential pulsar-black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of ~0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have re-detected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30ms. PSR J1101-6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757-27 appears to be an isolated recycled pulsar with a relatively long spin period of 17ms. In addition, PSR J1244-6359 is a mildly-recycled binary system with a heavy WD companion, PSR J1755-25 has a significant orbital eccentricity of 0.09, and PSR J1759-24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly-discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا