ﻻ يوجد ملخص باللغة العربية
When the motion of electrons is restricted to a plane under a perpendicular magnetic field B, a variety of quantum phases emerge at low temperatures whose properties are dictated by the Coulomb interaction and its interplay with disorder. At very strong B, the sequence of fractional quantum Hall (FQH) liquid phases terminates in an insulating phase, which is widely believed to be due to the solidification of electrons into domains possessing Wigner crystal (WC) order. The existence of such WC domains is signaled by the emergence of microwave pinning-mode resonances, which reflect the mechanical properties characteristic of a solid. However, the most direct manifestation of the broken translational symmetry accompanying the solidification - the spatial modulation of particles probability amplitude - has not been observed yet. Here, we demonstrate that nuclear magnetic resonance (NMR) provides a direct probe of the density topography of electron solids in the integer and fractional quantum Hall regimes. The data uncover quantum and thermal fluctuation of lattice electrons resolved on the nanometre scale. Our results pave the way to studies of other exotic phases with non-trivial spatial spin/charge order.
We present a new method for calculating ground state properties of quantum dots in high magnetic fields. It takes into account the equilibrium positions of electrons in a Wigner cluster to minimize the interaction energy in the high field limit. Assu
The lifetime of two dimensional electrons in GaAs quantum wells, placed in weak quantizing magnetic fields, is measured using a simple transport method in broad range of temperatures from 0.3 K to 20 K. The temperature variations of the electron life
The quantum Hall (QH) effect in two-dimensional (2D) electrons and holes in high quality graphene samples is studied in strong magnetic fields up to 45 T. QH plateaus at filling factors $ u=0,pm 1,pm 4$ are discovered at magnetic fields $B>$20 T, ind
We describe how a local non-equilibrium nuclear polarisation can be generated and detected by electrical means in a semiconductor quantum point contact device. We show that measurements of the nuclear spin relaxation rate will provide clear signature
We show that the critical magnetic fields at which a few-electron quantum dot undergoes transitions between successive values of its angular momentum (M), for large M values follow a very simple power-law dependence on the effective inter-electron in