ﻻ يوجد ملخص باللغة العربية
The Katz-Klemm-Vafa conjecture expresses the Gromov-Witten theory of K3 surfaces (and K3-fibred 3-folds in fibre classes) in terms of modular forms. Its recent proof gives the first non-toric geometry in dimension greater than 1 where Gromov-Witten theory is exactly solved in all genera. We survey the various steps in the proof. The MNOP correspondence and a new Pairs/Noether-Lefschetz correspondence for K3-fibred 3-folds transform the Gromov-Witten problem into a calculation of the full stable pairs theory of a local K3-fibred 3-fold. The stable pairs calculation is then carried out via degeneration, localisation, vanishing results, and new multiple cover formulae.
We review a combinatoric approach to the Hodge Conjecture for Fermat Varieties and announce new cases where the conjecture is true.
In this paper we give a new proof of the ELSV formula. First, we refine an argument of Okounkov and Pandharipande in order to prove (quasi-)polynomiality of Hurwitz numbers without using the ELSV formula (the only way to do that before used the ELSV
We prove a generalization of the Shapiro-Shapiro conjecture on Wronskians of polynomials, allowing the Wronskian to have complex conjugate roots. We decompose the real Schubert cell according to the number of real roots of the Wronski map, and define
We prove a conjecture of Sturmfels, Timme and Zwiernik on the ML-degrees of linear covariance models in algebraic statistics. As in our previous works on linear concentration models, the proof ultimately relies on the computation of certain intersection numbers on the varieties of complete quadrics.
The Yau-Zaslow conjecture determines the reduced genus 0 Gromov-Witten invariants of K3 surfaces in terms of the Dedekind eta function. Classical intersections of curves in the moduli of K3 surfaces with Noether-Lefschetz divisors are related to 3-fo