ترغب بنشر مسار تعليمي؟ اضغط هنا

Permission-Based Separation Logic for Multithreaded Java Programs

129   0   0.0 ( 0 )
 نشر من قبل Afshin Amighi
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Christian Haack




اسأل ChatGPT حول البحث

This paper presents a program logic for reasoning about multithreaded Java-like programs with dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits. In order to distinguish between initial monitor entrancies and monitor reentrancies, auxiliary variables keep track of multisets of currently held monitors. Data abstraction and behavioral subtyping are facilitated through abstract predicates, which are also used to represent monitor invariants, preconditions for thread starting and postconditions for thread joining. Value-parametrized types allow to conveniently capture common strong global invariants, like static object ownership relations. The program logic is presented for a model language with Java-like classes and interfaces, the soundness of the program logic is proven, and a number of illustrative examples are presented.



قيم البحث

اقرأ أيضاً

We develop local reasoning techniques for message passing concurrent programs based on ideas from separation logics and resource usage analysis. We extend processes with permission- resources and define a reduction semantics for this extended languag e. This provides a foundation for interpreting separation formulas for message-passing concurrency. We also define a sound proof system permitting us to infer satisfaction compositionally using local, separation-based reasoning.
Most modern (classical) programming languages support recursion. Recursion has also been successfully applied to the design of several quantum algorithms and introduced in a couple of quantum programming languages. So, it can be expected that recursi on will become one of the fundamental paradigms of quantum programming. Several program logics have been developed for verification of non-recursive quantum programs. However, there are as yet no general methods for reasoning about recursive procedures in quantum computing. We fill the gap in this paper by presenting a logic for recursive quantum programs. This logic is an extension of quantum Hoare logic for quantum While-programs. The (relative) completeness of the logic is proved, and its effectiveness is shown by a running example: fixed-point Grovers search.
In this paper, we explore how, and if, free choice permission (FCP) can be accepted when we consider deontic conflicts between certain types of permissions and obligations. As is well known, FCP can license, under some minimal conditions, the derivat ion of an indefinite number of permissions. We discuss this and other drawbacks and present six Hilbert-style classical deontic systems admitting a guarded version of FCP. The systems that we present are not too weak from the inferential viewpoint, as far as permission is concerned, and do not commit to weakening any specific logic for obligations.
In solving a query, the SLD proof procedure for definite programs sometimes searches an infinite space for a non existing solution. For example, querying a planner for an unreachable goal state. Such programs motivate the development of methods to pr ove the absence of a solution. Considering the definite program and the query ``<- Q as clauses of a first order theory, one can apply model generators which search for a finite interpretation in which the program clauses as well as the clause ``false <- Q are true. This paper develops a new approach which exploits the fact that all clauses are definite. It is based on a goal directed abductive search in the space of finite pre-interpretations for a pre-interpretation such that ``Q is false in the least model of the program based on it. Several methods for efficiently searching the space of pre-interpretations are presented. Experimental results confirm that our approach find solutions with less search than with the use of a first order model generator.
We propose a model of the substructural logic of Bunched Implications (BI) that is suitable for reasoning about quantum states. In our model, the separating conjunction of BI describes separable quantum states. We develop a program logic where pre- a nd post-conditions are BI formulas describing quantum states -- the program logic can be seen as a counterpart of separation logic for imperative quantum programs. We exercise the logic for proving the security of quantum one-time pad and secret sharing, and we show how the program logic can be used to discover a flaw in Google Cirqs tutorial on the Variational Quantum Algorithm (VQA).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا