ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron and recoil ion momentum imaging with a magneto-optically trapped target

449   0   0.0 ( 0 )
 نشر من قبل Renate Hubele
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A reaction microscope (ReMi) has been combined with a magneto-optical trap (MOT) for the kinematically complete investigation of atomic break-up processes. With the novel MOTReMi apparatus, the momentum vectors of the fragments of laser-cooled and state-prepared lithium atoms are measured in coincidence and over the full solid angle. %Earlier attempts to realize this combination failed due to intrinsic incompatibilities of the magnetic fields required for MOT and ReMi. The first successful implementation of a MOTReMi could be realized due to an optimized design of the present setup, a nonstandard operation of the MOT, and by employing a switching cycle with alternating measuring and trapping periods. The very low target temperature in the MOT ($2mK$) allow for an excellent momentum resolution. Optical preparation of the target atoms in the excited Li $2^2P_{3/2}$ state was demonstrated providing an atomic polarization of close to 100percent. While first experimental results were reported earlier, in this work we focus on the technical description of the setup and its performance in commissioning experiments involving target ionization in $266nm$ laser pulses and in collisions with projectile ions.



قيم البحث

اقرأ أيضاً

Electromagnetically induced absorption (EIA) was observed on a sample of $% ^{85}Rb$ in a magneto-optical trap using low intensity cw copropagating pump and probe optical fields. At moderate trapping field intensity, the EIA spectrum is determined by the Zeeman effect produced on the atomic ground-state by the trapping quadrupolar magnetic field. The use of EIA spectroscopy for the magnetic field mapping of cold atomic samples is illustrated.
We study the interaction of a light beams carrying angular momentum with a single, trapped and well localized ion. We provide a detailed calculation of selection rules and excitation probabilities for quadrupole transitions. The results show the depe ndencies on the angular momentum and polarization of the laser beam as well as the direction of the quantization magnetic field. In order to observe optimally the specific effects, focusing the angular momentum beam close to the diffraction limit is required. We discuss a protocol for examining experimentally the effects on the S$_{1/2}$ to D$_{5/2}$ transition using a $^{40}$Ca$^+$ ion. Various applications and advantages are expected when using light carrying angular momentum: In quantum information processing, where qubit states of ion crystals are controlled, parasitic light shifts could be avoided as the ion is excited in the dark zone of the beam at zero electric field amplitude. Such interactions also open the door to high dimensional entanglement between light and matter. In spectroscopy one might access transitions which have escaped excitation so far due to vanishing transition dipole moments.
We present experimental results for dissociative electron attachment to acetylene near the 3 eV $^2Pi_g$ resonance. In particular, we use an ion-momentum imaging technique to investigate the dissociation channel leading to C$_2$H$^-$ fragments. From our measured ion-momentum results we extract fragment kinetic energy and angular distributions. We directly observe a significant dissociation bending dynamic associated with the formation of the transitory negative ion. In modeling this bending dynamic with emph{ab initio} electronic structure and fixed-nuclei scattering calculations we obtain good agreement with the experiment.
105 - J. Deiglmayr , M. Repp , O. Dulieu 2011
We investigate the rovibrational population redistribution of polar molecules in the electronic ground state induced by spontaneous emission and blackbody radiation. As a model system we use optically trapped LiCs molecules formed by photoassociation in an ultracold two-species gas. The population dynamics of vibrational and rotational states is modeled using an ab-initio electric dipole moment function and experimental potential energy curves. Comparison with the evolution of the v=3 electronic ground state yields good qualitative agreement. The analysis provides important input to assess applications of ultracold LiCs molecules in quantum simulation and ultracold chemistry.
We present a quantitative model for magneto-optical traps operating on narrow transitions, where the transition linewidth and the recoil shift are comparable. We combine a quantum treatment of the light scattering process with a Monte-Carlo simulatio n of the atomic motion. By comparing our model to an experiment operating on the $5rm{s}^2~^1rm{S}_0 rightarrow 5rm{s}5rm{p}~^3rm{P}_1$ transition in strontium, we show that it quantitatively reproduces the cloud size, position, temperature and dynamics over a wide range of operating conditions, without any adjustable parameters. We also present an extension of the model that quantitatively reproduces the transfer of atoms into a far off-resonance dipole trap (FORT), highlighting its use as a tool for optimising complex cold atom experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا