ﻻ يوجد ملخص باللغة العربية
We report on the spin densities in CeRuSn determined at elevated and at low temperatures using polarized neutron diffraction. At 285 K, where the CeRuSn crystal structure, commensurate with the CeCoAl type, contains two different crystallographic Ce sites, we observe that one Ce site is clearly more susceptible to the applied magnetic field whereas the other is hardly polarizable. This finding clearly documents that distnictly different local environment of the two Ce sites causes the Ce ions to split into magnetic Ce3+ and non-magnetic Ce(4-delta)+ valence states. With lowering the temperature, the crystal structure transforms to a structure incommensurately modulated along the c axis. This leads to new inequivalent crystallographic Ce sites resulting in a re-distribution of spin densities. Our analysis using the simplest structural approximant shows that in this metallic system Ce ions co-exist in different valence states. Localized 4f states that fulfill the third Hunds rule are found to be close to the ideal Ce3+ state (at sites with the largest Ce-Ru interatomic distances) whereas Ce(4-delta)+ valence states are found to be itinerant and situated at Ce sites with much shorter Ce-Ru distances. The similarity to the famous alpha-gamma transition in elemental cerium is discussed.
The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to
CeRuSn exhibits an extraordinary room temperature structure at 300~K with coexistence of two types of Ce ions, namely trivalent Ce$^{3+}$ and intermediate valent Ce$^{(4-delta)+}$, in a metallic environment. The ordered arrangement of these two Ce ty
The S=1/2 Heisenberg spin chain compound SrCuO2 doped with different amounts of nickel (Ni), palladium (Pd), zinc (Zn) and cobalt (Co) has been studied by means of Cu nuclear magnetic resonance (NMR). Replacing only a few of the S=1/2 Cu ions with Ni
At ambient temperatures, CeRuSn exhibits an extraordinary structure with a coexistence of two types of Ce ions in a metallic environment, namely trivalent Ce3+ and intermediate valent Ce(4-x)+. Charge ordering produces a doubling of the unit cell alo
We have studied the magnetic torque in uranium monosulfide (US) single crystals to explore the magnetic anisotropy in this material. Uranium monosulfide crystallizes in cubic, NaCl-type of crystal structure and exhibits the largest magneto-crystallin