ترغب بنشر مسار تعليمي؟ اضغط هنا

Component periods of non-principal-axis rotation and their manifestations in the lightcurves of asteroids and bare cometary nuclei

78   0   0.0 ( 0 )
 نشر من قبل Nalin Samarasinha
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lightcurve observations of asteroids and bare cometary nuclei are the most widely used observational tool to derive the rotational parameters. Therefore, an in-depth understanding of how component periods of dynamically excited non-principal axis (NPA) rotators manifest in lightcurves is a crucial step in this process. We investigated this with the help of numerically generated lightcurves of NPA rotators with component periods known a priori. The component periods of NPA rotation were defined in terms of two widely used yet complementary conventions. We derive the relationships correlating the component rotation periods in the two conventions. These relationships were then used to interpret the periodicity signatures present in the simulated lightcurves and rationalize them in either convention.

قيم البحث

اقرأ أيضاً

We report new lightcurves and phase functions for nine Jupiter-family comets (JFCs). They were observed in the period 2004-2015 with various ground telescopes as part of the Survey of Ensemble Physical Properties of Cometary Nuclei (SEPPCoN) as well as during devoted observing campaigns. We add to this a review of the properties of 35 JFCs with previously published rotation properties. The photometric time-series were obtained in Bessel R, Harris R and SDSS r filters and were absolutely calibrated using stars from the Pan-STARRS survey. This specially-developed method allowed us to combine data sets taken at different epochs and instruments with absolute-calibration uncertainty down to 0.02 mag. We used the resulting time series to improve the rotation periods for comets 14P/Wolf, 47P/Ashbrook-Jackson, 94P/Russell, and 110P/Hartley 3 and to determine the rotation rates of comets 93P/Lovas and 162P/Siding-Spring for the first time. In addition to this, we determined the phase functions for seven of the examined comets and derived geometric albedos for eight of them. We confirm the known cut-off in bulk densities at $sim$0.6 g $mathrm{cm^{-3}}$ if JFCs are strengthless. Using the model of Davidsson (2001) for prolate ellipsoids with typical density and elongations, we conclude that none of the known JFCs require tensile strength larger than 10-25 Pa to remain stable against rotational instabilities. We find evidence for an increasing linear phase function coefficient with increasing geometric albedo. The median linear phase function coefficient for JFCs is 0.046 mag/deg and the median geometric albedo is 4.2 per cent.
Comets are made of volatile and refractory material and naturally experience various degrees of sublimation as they orbit around the Sun. This gas release, accompanied by dust, represents what is traditionally described as activity. Although the basi c principles are well established, most details remain elusive, especially regarding the mechanisms by which dust is detached from the surface and subsequently accelerated by the gas flows surrounding the nucleus. During its 2 years rendez-vous with comet 67P/Churyumov-Gerasimenko, ESAs Rosetta has observed cometary activity with unprecedented details, in both the inbound and outbound legs of the comets orbit. This trove of data provides a solid ground on which new models of activity can be built. In this chapter, we review how activity manifests at close distance from the surface, establish a nomenclature for the different types of observed features, discuss how activity is at the same time transforming and being shaped by the topography, and finally address several potential mechanisms.
Using viscoelastic mass/spring model simulations, we explore tidal evolution and migration of compact binary asteroid systems. We find that after the secondary is captured into a spin-synchronous state, non-principal axis rotation in the secondary ca n be long-lived. The secondarys long axis can remain approximately aligned along the vector connecting secondary to primary while the secondary rocks back and forth about its long axis. Inward orbital semi-major axis migration can also resonantly excite non-principal axis rotation. By estimating solar radiation forces on triangular surface meshes, we show that the magnitude of the BYORP effect induced torque is sensitive to the secondarys spin state. Non-principal axis rotation within the 1:1 spin-orbit resonance can reduce the BYORP torque or cause frequent reversals in its direction.
The Karin family is a very young asteroid family created by an asteroid breakup 5.8 Myr ago. Since the members of this family probably have not experienced significant orbital or collisional evolution yet, it is possible that they still preserve prop erties of the original family-forming event in terms of their spin state. As we carried out a series of photometric observations of the Karin family asteroids, here we report an analysis result of lightcurves including the rotation period of eleven members. The mean rotation rate of the Karin family members turned out to be much lower than those of NEAs or smaller MBAs (diameter D<12 km), and even lower than that of larger MBAs (D>130 km). We investigated a correlation between the peak-to-peak variation magnitude reduced to zero solar phase angle and the rotation period of the eleven Karin family asteroids, and found a possible trend that elongated members have lower spin rate, and less elongated members have higher spin rate. However, this has to be confirmed by another series of future observations.
We study the visible and near-infrared (NIR) spectral properties of different ACO populations and compare them to the independently determined properties of comets. We select our ACOs sample based on published dynamical criteria and present our own observational results obtained using the 10.4m Gran Telescopio Canarias (GTC), the 4.2m William Herschel Telescope (WHT), the 3.56m Telescopio Nazionale Galileo (TNG), and the 2.5m Isaac Newton Telescope (INT), all located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility (IRTF), located at the Mauna Kea Observatory, in Hawaii. We include in the analysis the spectra of ACOs obtained from the literature. We derive the spectral class and the visible and NIR spectral slopes. We also study the presence of hydrated minerals by studying the 0.7 $mu$m band and the UV-drop below 0.5 $mu$m associated with phyllosilicates. We present new observations of 17 ACOs, 11 of them observed in the visible, 2 in the NIR and 4 in the visible and NIR. We also discuss the spectra of 12 ACOs obtained from the literature. All but two ACOs have a primitive-like class spectrum (X or D-type). Almost 100% of the ACOs in long-period cometary orbits (Damocloids) are D-types. Those in Jupiter family comet orbits (JFC-ACOs) are $sim$ 60% D-types and $sim$ 40% X-types. The mean spectral slope $S$ of JFC-ACOs is 9.7 $pm$ 4.6 %/1000 AA and for the Damocloids this is 12.2 $pm$ 2.0 %/1000 AA . No evidence of hydration on the surface of ACOs is found from their visible spectra. The slope and spectral class distribution of ACOs is similar to that of comets. The spectral classification, the spectral slope distribution of ACOs, and the lack of spectral features indicative of the presence of hydrated minerals on their surface, strongly suggest that ACOs are likely dormant or extinct comets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا