ترغب بنشر مسار تعليمي؟ اضغط هنا

PyCraters: A Python framework for crater function analysis

140   0   0.0 ( 0 )
 نشر من قبل Scott Norris
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Scott A. Norris




اسأل ChatGPT حول البحث

We introduce a Python framework designed to automate the most common tasks associated with the extraction and upscaling of the statistics of single-impact crater functions to inform coefficients of continuum equations describing surface morphology evolution. Designed with ease-of-use in mind, the framework allows users to extract meaningful statistical estimates with very short Python programs. Wrappers to interface with specific simulation packages, routines for statistical extraction of output, and fitting and differentiation libraries are all hidden behind simple, high-level user-facing functions. In addition, the framework is extensible, allowing advanced users to specify the collection of specialized statistics or the creation of customized plots. The framework is hosted on the BitBucket service under an open-source license, with the aim of helping non-specialists easily extract preliminary estimates of relevant crater function results associated with a particular experimental system.



قيم البحث

اقرأ أيضاً

We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials s cience codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.
Computational physics problems often have a common set of aspects to them that any particular numerical code will have to address. Because these aspects are common to many problems, having a framework already designed and ready to use will not only s peed the development of new codes, but also enhance compatibility between codes. Some of the most common aspects of computational physics problems are: a grid, a clock which tracks the flow of the simulation, and a set of models describing the dynamics of various quantities on the grid. Having a framework that could deal with these basic aspects of the simulation in a common way could provide great value to computational scientists by solving various numerical and class design issues that routinely arise. This paper describes the newly developed computational framework that we have built for rapidly prototyping new physics codes. This framework, called turboPy, is a lightweight physics modeling framework based on the design of the particle-in-cell code turboWAVE. It implements a class (called Simulation) which drives the simulation and manages communication between physics modules, a class (called PhysicsModule) which handles the details of the dynamics of the various parts of the problem, and some additional classes such as a Grid class and a Diagnostic class to handle various ancillary issues that commonly arise.
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these deve lopments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high pressure water.
112 - David Lange 2018
There are numerous approaches to building analysis applications across the high-energy physics community. Among them are Python-based, or at least Python-driven, analysis workflows. We aim to ease the adoption of a Python-based analysis toolkit by ma king it easier for non-expert users to gain access to Python tools for scientific analysis. Experimental software distributions and individual user analysis have quite different requirements. Distributions tend to worry most about stability, usability and reproducibility, while the users usually strive to be fast and nimble. We discuss how we built and now maintain a python distribution for analysis while satisfying requirements both a large software distribution (in our case, that of CMSSW) and user, or laptop, level analysis. We pursued the integration of tools used by the broader data science community as well as HEP developed (e.g., histogrammar, root_numpy) Python packages. We discuss concepts we investigated for package integration and testing, as well as issues we encountered through this process. Distribution and platform support are important topics. We discuss our approach and progress towards a sustainable infrastructure for supporting this Python stack for the CMS user community and for the broader HEP user community.
Parameterization of interatomic forcefields is a necessary first step in performing molecular dynamics simulations. This is a non-trivial global optimization problem involving quantification of multiple empirical variables against one or more propert ies. We present EZFF, a lightweight Python library for parameterization of several types of interatomic forcefields implemented in several molecular dynamics engines against multiple objectives using genetic-algorithm-based global optimization methods. The EZFF scheme provides unique functionality such as the parameterization of hybrid forcefields composed of multiple forcefield interactions as well as built-in quantification of uncertainty in forcefield parameters and can be easily extended to other forcefield functional forms as well as MD engines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا