ﻻ يوجد ملخص باللغة العربية
The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.
A new Skyrme-like energy density suitable for studies of strongly elongated nuclei has been determined in the framework of the Hartree-Fock-Bogoliubov theory using the recently developed model-based, derivative-free optimization algorithm POUNDerS. A
The explicit density (rho) dependence in the coupling coefficients of the non-relativistic nuclear energy-density functional (EDF) encodes effects of three-nucleon forces and dynamical correlations. The necessity for a coupling coefficient in the for
We present a minimal nuclear energy density functional (NEDF) called SeaLL1 that has the smallest number of possible phenomenological parameters to date. SeaLL1 is defined by 7 significant phenomenological parameters, each related to a specific nucle
The density functional theory (DFT) is based on the existence and uniqueness of a universal functional $E[rho]$, which determines the dependence of the total energy on single-particle density distributions. However, DFT says nothing about the form of
We introduce a finite-range pseudopotential built as an expansion in derivatives up to next-to-next-to-next-to-leading order (N$^3$LO) and we calculate the corresponding nonlocal energy density functional (EDF). The coupling constants of the nonlocal