ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-periodic pulsations in solar and stellar flares: re-evaluating their nature in the context of power-law flare Fourier spectra

85   0   0.0 ( 0 )
 نشر من قبل Andrew Inglis
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of quasi-periodic pulsations in solar and stellar flares remains debated. Recent work has shown that power-law-like Fourier power spectra, also referred to as red noise processes, are an intrinsic property of solar and stellar flare signals, a property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the existing interpretations and assumptions regarding QPP is needed. Here we adopt a Bayesian method for investigating this phenomenon, fully considering the Fourier power law properties of flare signals. Using data from the PROBA2/LYRA, Fermi/GBM, Nobeyama Radioheliograph and Yohkoh/HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally we examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all but one event tested, an explicit oscillation is not required in order to explain the observations. Instead, the flare signals are adequately described as a manifestation of a power law in the Fourier power spectrum, rather than a direct signature of oscillating components or structures. However, for the flare of 1998 May 8, strong evidence for the existence of an explicit oscillation with P ~ 14-16 s is found in the 17 GHz radio data and the 13-23 keV Yohkoh HXT data. We conclude that, most likely, many previously analysed events in the literature may be similarly described in terms of power laws in the flare Fourier power spectrum, without the need to invoke a narrowband, oscillatory component. As a result the prevalence of oscillatory signatures in solar and stellar flares may be less than previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.



قيم البحث

اقرأ أيضاً

134 - D. Li , Z. J. Ning , 2015
We explore the Quasi-Periodic Pulsations (QPPs) in a solar flare observed by Fermi Gamma-ray Burst Monitor (GBM), Solar Dynamics Observatory (SDO), Solar Terrestrial Relations Observatory (STEREO), and Interface Region Imaging Spectrograph (IRIS) on 2014 September 10. QPPs are identified as the regular and periodic peaks on the rapidly-varying components, which are the light curves after removing the slowly-varying components. The QPPs display only three peaks at the beginning on the hard X-ray (HXR) emissions, but ten peaks on the chromospheric and coronal line emissions, and more than seven peaks (each peak is corresponding to a type III burst on the dynamic spectra) at the radio emissions. An uniform quasi-period about 4 minutes are detected among them. AIA imaging observations exhibit that the 4-min QPPs originate from the flare ribbon, and tend to appear on the ribbon front. IRIS spectral observations show that each peak of the QPPs tends to a broad line width and a red Doppler velocity at C I, O IV, Si IV, and Fe XXI lines. Our findings indicate that the QPPs are produced by the non-thermal electrons which are accelerated by the induced quasi-periodic magnetic reconnections in this flare.
Quasi-periodic pulsations (QPP) are common in solar flares and are now regularly observed in stellar flares. We present the detection of two different types of QPP signals in the thermal emission light curves of the X9.3 class solar flare SOL2017-09- 06T12:02, which is the most powerful flare of Cycle 24. The period of the shorter-period QPP drifts from about 12 to 25 seconds during the flare. The observed properties of this QPP are consistent with a sausage oscillation of a plasma loop in the flaring active region. The period of the longer-period QPP is about 4 to 5 minutes. Its properties are compatible with standing slow magnetoacoustic oscillations, which are often detected in coronal loops. For both QPP signals, other mechanisms such as repetitive reconnection cannot be ruled out, however. The studied solar flare has an energy in the realm of observed stellar flares, and the fact that there is evidence of a short-period QPP signal typical of solar flares along with a long-period QPP signal more typical of stellar flares suggests that the different ranges of QPP periods typically observed in solar and stellar flares is likely due to observational constraints, and that similar physical processes may be occurring in solar and stellar flares.
Quasi-periodic pulsations (QPPs) appear to be a common feature observed in the light curves of both solar and stellar flares. However, their quasi-periodic nature, along with the fact that they can be small in amplitude and short-lived, makes QPPs di fficult to unequivocally detect. In this paper, we test the strengths and limitations of state-of-the-art methods for detecting QPPs using a series of hare-and-hounds exercises. The hare simulated a set of flares, both with and without QPPs of a variety of forms, while the hounds attempted to detect QPPs in blind tests. We use the results of these exercises to create a blueprint for anyone who wishes to detect QPPs in real solar and stellar data. We present eight clear recommendations to be kept in mind for future QPP detections, with the plethora of solar and stellar flare data from new and future satellites. These recommendations address the key pitfalls in QPP detection, including detrending, trimming data, accounting for colored noise, detecting stationary-period QPPs, detecting QPPs with nonstationary periods, and ensuring that detections are robust and false detections are minimized. We find that QPPs can be detected reliably and robustly by a variety of methods, which are clearly identified and described, if the appropriate care and due diligence are taken.
Small amplitude quasi-periodic pulsations (QPPs) detected in soft X-ray emission are commonplace in many flares. To date, the underpinning processes resulting in the QPPs are unknown. In this paper, we attempt to constrain the prevalence of textit{st ationary} QPPs in the largest statistical study to date, including a study of the relationship of QPP periods to the properties of the flaring active region, flare ribbons, and CME affiliation. We build upon the work of cite{inglis2016} and use a model comparison test to search for significant power in the Fourier spectra of lightcurves of the GOES 1--8~AA channel. We analyze all X-, M- and C- class flares of the past solar cycle, a total of 5519 flares, and search for periodicity in the 6-300~s timescale range. Approximately 46% of X-class, 29% of M-class and 7% of C-class flares show evidence of stationary QPPs, with periods that follow a log-normal distribution peaked at 20~s. The QPP periods were found to be independent of flare magnitude, however a positive correlation was found between QPP period and flare duration. No dependence of the QPP periods to the global active region properties was identified. A positive correlation was found between QPPs and ribbon properties including unsigned magnetic flux, ribbon area and ribbon separation distance. We found that both flares with and without an associated CME can host QPPs. Furthermore, we demonstrate that for X- and M- class flares, decay phase QPPs have statistically longer periods than impulsive phase QPPs.
126 - Lei Lu , Dong Li , Zongjun Ning 2021
We report quasi-periodic pulsations (QPPs) with double periods during three solar flares (viz. SOL2011-Feb-15T01:44, SOL2011-Sep-25T04:31, SOL2012-May-17T01:25). The flare QPPs were observed from light curves in Ly$alpha$, hard X-ray (HXR) and microw ave emissions, with the Ly$alpha$ emission recorded by the Geostationary Operational Environmental Satellite, the HXR emission recorded by the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Fermi Gamma-ray Burst Monitor, and the microwave emission recorded by the Nobeyama Radio Polarimeters and Radioheliograph. By using the Markov chain Monte Carlo (MCMC) method, QPPs with double periods of about two minutes and one minute were first found in the Ly$alpha$ emission. Then using the same method, a QPP with nearly the same period of about two minutes was also found in HXR and microwave emissions. Considering the possible common origin (nonthermal electrons) between Ly$alpha$ and HXR/microwave emission, we suggest that the two-minute QPP results from the periodic acceleration of nonthermal electrons during magnetic reconnections. The ratio between the double periods in the Ly$alpha$ emission was found to be close to two, which is consistent with the theoretical expectation between the fundamental and harmonic modes. However, we cannot rule out other possible driving mechanisms for the one-minute QPPs in HXR/microwave emissions due to their relatively large deviations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا