ترغب بنشر مسار تعليمي؟ اضغط هنا

Active galactic nuclei at z ~ 1.5: I. Spectral energy distribution and accretion discs

153   0   0.0 ( 0 )
 نشر من قبل Daniel Capellupo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The physics of active super massive black holes (BHs) is governed by their mass (M_BH), spin (a*) and accretion rate ($dot{M}$). This work is the first in a series of papers with the aim of testing how these parameters determine the observable attributes of active galactic nuclei (AGN). We have selected a sample in a narrow redshift range, centered on z~1.55, that covers a wide range in M_BH and $dot{M}$, and are observing them with X-shooter, covering rest wavelengths ~1200-9800 AA. The current work covers 30 such objects and focuses on the origin of the AGN spectral energy distribution (SED). After estimating M_BH and $dot{M}$ based on each observed SED, we use thin AD models and a Bayesian analysis to fit the observed SEDs in our sample. We are able to fit 22/30 of the SEDs. Out of the remaining 8 SEDs, 3 can be fit by the thin AD model by correcting the observed SED for reddening within the host galaxy and 4 can be fit by adding a disc wind to the model. In four of these 8 sources, Milky Way-type extinction, with the strong 2175AA feature, provides the best reddening correction. The distribution in spin parameter covers the entire range, from -1 to 0.998, and the most massive BHs have spin parameters greater than 0.7. This is consistent with the spin-up model of BH evolution. Altogether, these results indicate that thin ADs are indeed the main power houses of AGN, and earlier claims to the contrary are likely affected by variability and a limited observed wavelength range.



قيم البحث

اقرأ أيضاً

This is the third paper in a series describing the spectroscopic properties of a sample of 39 AGN at $z sim 1.5$, selected to cover a large range in black hole mass ($M_{BH}$) and Eddington ratio ($L/L_{Edd}$). In this paper, we continue the analysis of the VLT/X-shooter observations of our sample with the addition of 9 new sources. We use an improved Bayesian procedure, which takes into account intrinsic reddening, and improved $M_{BH}$ estimates, to fit thin accretion disc (AD) models to the observed spectra and constrain the spin parameter ($a_*$) of the central black holes. We can fit 37 out of 39 AGN with the thin AD model, and for those with satisfactory fits, we obtain constraints on the spin parameter of the BHs, with the constraints becoming generally less well defined with decreasing BH mass. Our spin parameter estimates range from $sim$$-$0.6 to maximum spin for our sample, and our results are consistent with the spin-up scenario of BH spin evolution. We also discuss how the results of our analysis vary with the inclusion of non-simultaneous GALEX photometry in our thin AD fitting. Simultaneous spectra covering the rest-frame optical through far-UV are necessary to definitively test the thin AD theory and obtain the best constraints on the spin parameter.
We present ongoing work on the spectral energy distributions (SEDs) of active galactic nuclei (AGNs), derived from X-ray, ultraviolet, optical, infrared and radio photometry and spectroscopy. Our work is motivated by new wide-field imaging surveys th at will identify vast numbers of AGNs, and by the need to benchmark AGN SED fitting codes. We have constructed 41 SEDs of individual AGNs and 80 additional SEDs that mimic Seyfert spectra. All of our SEDs span 0.09 to 30 microns, while some extend into the X-ray and/or radio. We have tested the utility of the SEDs by using them to generate AGN photometric redshifts, and they outperform SEDs from the prior literature, including reduced redshift errors and flux density residuals.
We present spectral energy distributions (SEDs) of 41 active galactic nuclei, derived from multiwavelength photometry and archival spectroscopy. All of the SEDs span at least 0.09 to 30 micron, but in some instances wavelength coverage extends into t he X-ray, far-infrared and radio. For some AGNs we have fitted the measured far-infrared photometry with greybody models, while radio flux density measurements have been approximated by power-laws or polynomials. We have been able to fill some of the gaps in the spectral coverage using interpolation or extrapolation of simple models. In addition to the 41 individual AGN SEDs, we have produced 72 Seyfert SEDs by mixing SEDs of the central regions of Seyferts with galaxy SEDs. Relative to the literature, our templates have broader wavelength coverage and/or higher spectral resolution. We have tested the utility of our SEDs by using them to generate photometric redshifts for 0 < z < 6.12 AGNs in the Bootes field (selected with X-ray, IR and optical criteria) and, relative to SEDs from the literature, they produce comparable or better photometric redshifts with reduced flux density residuals.
We derive the spectral energy distribution (SED) of the nucleus of the Seyfert galaxy NGC4565. Despite its classification as a Seyfert2, the nuclear source is substantially unabsorbed. The absorption we find from Chandra data (N_H=2.5 X 10^21 cm^-2) is consistent with that produced by material in the galactic disk of the host galaxy. HST images show a nuclear unresolved source in all of the available observations, from the near-IR H band to the optical U band. The SED is completely different from that of Seyfert galaxies and QSO, as it appears basically ``flat in the IR-optical region, with a small drop-off in the U-band. The location of the object in diagnostic planes for low luminosity AGNs excludes a jet origin for the optical nucleus, and its extremely low Eddington ratio L_o/L_Edd indicates that the radiation we observe is most likely produced in a radiatively inefficient accretion flow (RIAF). This would make NGC4565 the first AGN in which an ADAF-like process is identified in the optical. We find that the relatively high [OIII] flux observed from the ground cannot be all produced in the nucleus. Therefore, an extended NLR must exist in this object. This may be interpreted in the framework of two different scenarios: i) the radiation from ADAFs is sufficient to give rise to high ionization emission-line regions through photoionization, or ii) the nuclear source has recently ``turned-off, switching from a high-efficiency accretion regime to the present low-efficiency state.
Warm coronae, thick ($tau_{mathrm{T}}approx 10$-$20$, where $tau_{mathrm{T}}$ is the Thomson depth) Comptonizing regions with temperatures of $sim 1$ keV, are proposed to exist at the surfaces of accretion discs in active galactic nuclei (AGNs). By c ombining with the reflection spectrum, warm coronae may be responsible for producing the smooth soft excess seen in AGN X-ray spectra. This paper studies how a warm corona must adjust in order to sustain the soft excess through large changes in the AGN flux. Spectra from one-dimensional constant density and hydrostatic warm coronae models are calculated assuming the illuminating hard X-ray power-law, gas density, Thomson depth and coronal heating strength vary in response to changes in the accretion rate. We identify models that produce warm coronae with temperatures between $0.3$ and $1.1$ keV, and measure the photon indices and emitted fluxes in the $0.5$-$2$ keV and $2$-$10$ keV bands. Correlations and anti-correlations between these quantities depend on the evolution and structure of the warm corona. Tracing the path that an AGN follows through these correlations will constrain how warm coronae are heated and connected to the accretion disc. Variations in the density structure and coronal heating strength of warm coronae will lead to a variety of soft excess strengths and shapes in AGNs. A larger accretion rate will, on average, lead to a warm corona that produces a stronger soft excess, consistent with observations of local Seyfert galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا