ترغب بنشر مسار تعليمي؟ اضغط هنا

Malware Ecology Viewed as Ecological Succession: Historical Trends and Future Prospects

71   0   0.0 ( 0 )
 نشر من قبل Reginald Smith
 تاريخ النشر 2014
والبحث باللغة English
 تأليف Reginald D. Smith




اسأل ChatGPT حول البحث

The development and evolution of malware including computer viruses, worms, and trojan horses, is shown to be closely analogous to the process of community succession long recognized in ecology. In particular, both changes in the overall environment by external disturbances, as well as, feedback effects from malware competition and antivirus coevolution have driven community succession and the development of different types of malware with varying modes of transmission and adaptability.

قيم البحث

اقرأ أيضاً

Industrial processes rely on sensory data for decision-making processes, risk assessment, and performance evaluation. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the dissemination of trustworthy data. For the physical data to be trustworthy, it needs to be cross-validated through multiple sensor sources with overlapping fields of view. Cross-validated data can then be stored on the blockchain, to maintain its integrity and trustworthiness. Once trustworthy data is recorded on the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, Digital Twins (DTs) can be leveraged to draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Empowering DTs with blockchain in industrial use-cases targets key challenges of disparate data repositories, untrustworthy data dissemination, and the need for predictive maintenance. In this survey, while highlighting the key benefits of using blockchain-based DTs, we present a comprehensive review of the state-of-the-art research results for blockchain-based DTs. Based on the current research trends, we discuss a trustworthy blockchain-based DTs framework. We highlight the role of Artificial Intelligence (AI) in blockchain-based DTs. Furthermore, we discuss current and future research and deployment challenges of blockchain-supported DTs that require further investigation.
A small but growing number of people are finding interesting parallels between ecosystems as studied by ecologists (think of a Savanna or the Amazon rain forest or a Coral reef) and tumours1-3. The idea of viewing cancer from an ecological perspectiv e has many implications but fundamentally, it means that we should not see cancer just as a group of mutated cells. A more useful definition of cancer is to consider it a disruption in the complex balance of many interacting cellular and microenvironmental elements in a specific organ. This perspective means that organs undergoing carcinogenesis should be seen as sophisticated ecosystems in homeostasis that cancer cells can disrupt. It also makes cancer seem even more complex but may ultimately provides isights that make it more treatable. Here we discuss how ecological principles can be used to better understand cancer progression and treatment, using several mathematical and computational models to illustrate our argument.
Residential mobility is deeply entangled with all aspects of hunter-gatherer life ways, and is therefore an issue of central importance in hunter-gatherer studies. Hunter-gatherers vary widely in annual rates of residential mobility, and understandin g the sources of this variation has long been of interest to anthropologists and archaeologists. Since mobility is, to a large extent, driven by the need for a continuous supply of food, a natural framework for addressing this question is provided by the metabolic theory of ecology. This provides a powerful framework for formulating formal testable hypotheses concerning evolutionary and ecological constraints on the scale and variation of hunter-gatherer residential mobility. We evaluate these predictions using extant data and show strong support for the hypotheses. We show that the overall scale of hunter-gatherer residential mobility is predicted by average human body size, and the limited capacity of mobile hunter-gatherers to store energy internally. We then show that the majority of variation in residential mobility observed across cultures is predicted by energy availability in local ecosystems. Our results demonstrate that large-scale evolutionary and ecological processes, common to all plants and animals, constrain hunter-gatherers in predictable ways as they move through territories to effectively exploit resources over the course of a year. Moreover, our results extend the scope of the metabolic theory of ecology by showing how it successfully predicts variation in the behavioral ecology of populations within a species.
This paper focuses on a core task in computational sustainability and statistical ecology: species distribution modeling (SDM). In SDM, the occurrence pattern of a species on a landscape is predicted by environmental features based on observations at a set of locations. At first, SDM may appear to be a binary classification problem, and one might be inclined to employ classic tools (e.g., logistic regression, support vector machines, neural networks) to tackle it. However, wildlife surveys introduce structured noise (especially under-counting) in the species observations. If unaccounted for, these observation errors systematically bias SDMs. To address the unique challenges of SDM, this paper proposes a framework called StatEcoNet. Specifically, this work employs a graphical generative model in statistical ecology to serve as the skeleton of the proposed computational framework and carefully integrates neural networks under the framework. The advantages of StatEcoNet over related approaches are demonstrated on simulated datasets as well as bird species data. Since SDMs are critical tools for ecological science and natural resource management, StatEcoNet may offer boosted computational and analytical powers to a wide range of applications that have significant social impacts, e.g., the study and conservation of threatened species.
Malware is a piece of software that was written with the intent of doing harm to data, devices, or people. Since a number of new malware variants can be generated by reusing codes, malware attacks can be easily launched and thus become common in rece nt years, incurring huge losses in businesses, governments, financial institutes, health providers, etc. To defeat these attacks, malware classification is employed, which plays an essential role in anti-virus products. However, existing works that employ either static analysis or dynamic analysis have major weaknesses in complicated reverse engineering and time-consuming tasks. In this paper, we propose a visualized malware classification framework called VisMal, which provides highly efficient categorization with acceptable accuracy. VisMal converts malware samples into images and then applies a contrast-limited adaptive histogram equalization algorithm to enhance the similarity between malware image regions in the same family. We provided a proof-of-concept implementation and carried out an extensive evaluation to verify the performance of our framework. The evaluation results indicate that VisMal can classify a malware sample within 5.2ms and have an average accuracy of 96.0%. Moreover, VisMal provides security engineers with a simple visualization approach to further validate its performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا