ﻻ يوجد ملخص باللغة العربية
Here we report the successful synthesis of a spin- & charge-decoupled diluted magnetic semiconductor (Ca,Na)(Zn,Mn)2As2, crystallizing into the hexagonal CaAl2Si2 structure. The compound shows a ferromagnetic transition with a Curie temperature up to 33 K with 10% Na doping, which gives rise to carrier density of np~10^20 cm^-3. The new DMS is a soft magnetic material with HC<400 Oe. The anomalous Hall effect is observed below the ferromagnetic ordering temperature. With increasing Mn doping, ferromagnetic order is accompanied by an interaction between the local spin and mobile charge, giving rise to a minimum in resistivity at low temperatures and localizing the conduction electrons. The system provides an ideal platform for studying the interaction of the local spins and conduction electrons.
We report the discovery of a new diluted magnetic semiconductor, Li(Zn,Mn)P, in which charge and spin are introduced independently via lithium off-stoichiometry and the isovalent substitution of Mn2+ for Zn2+, respectively. Isostructural to (Ga,Mn)As
A new diluted ferromagnetic semiconductor (Sr,Na)(Zn,Mn)2As2 is reported, in which charge and spin doping are decoupled via Sr/Na and Zn/Mn substitutions, respectively, being distinguished from classic (Ga,Mn)As where charge & spin doping are simulta
Diluted ferromagnetic semiconductors (DMSs) that combine the properties of semiconductors with ferromagnetism have potential application in spin-sensitive electronics (spintronics) devices. The search for DMS materials exploded after the observation
Recently a new type diluted magnetic semiconductor (BaK)(ZnMn)2As2 (BZA) with high Cure temperature (Tc) was discovered showing independent spin and charge doping mechanism. This makes BZA a promising material for spintronics devices. Here we report
In this paper we report successful synthesis and magnetic properties of (Ca,Na)(Zn,Mn)2Sb2 as a new ferromagnetic dilute magnetic semiconductor (DMS). In this DMS material the concentration of magnetic moments can be controlled independently from the