ترغب بنشر مسار تعليمي؟ اضغط هنا

Mutual influence of supernovae and molecular clouds

61   0   0.0 ( 0 )
 نشر من قبل Olivier Iffrig
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Molecular clouds are known to be turbulent and strongly affected by stellar feedback. Moreover, stellar feedback is believed to drive turbulence at large scales in galaxies. Aims. We study the role played by supernovae in molecular clouds and the influence of the magnetic field on this process. Methods. We performed three-dimensional numerical simulations of supernova explosions, in and near turbulent self-gravitating molecular clouds. In order to study the influence of the magnetic field, we performed both hydrodynamical and magnetohydrodynamical simulations. We also ran a series of simple uniform density medium simulations and developed a simple analytical model. Results. We find that the total amount of momentum that is delivered during supernova explosions typically varies by a factor of about 2, even when the gas density changes by 3 orders of magnitude. However, the amount of momentum delivered to the dense gas varies by almost a factor of 10 if the supernova explodes within or outside the molecular cloud. The magnetic field has little influence on the total amount of momentum injected by the supernova explosions but increases the momentum injected into the dense gas. Conclusions. Supernovae that explode inside molecular clouds remove a significant fraction of the cloud mass. Supernovae that explode outside have a limited influence on the cloud. It is thus essential to know sufficiently well the correlation between supernovae and the surrounding dense material in order to know whether supernovae can regulate star formation effectively.

قيم البحث

اقرأ أيضاً

While the importance of supernova feedback in galaxies is well established, its role on the scale of molecular clouds is still debated. In this work, we focus on the impact of supernovae on individual clouds, using a high-resolution magneto-hydrodyna mic simulation of a region of 250 pc where we resolve the formation of individual massive stars. The supernova feedback is implemented with real supernovae that are the natural evolution of the resolved massive stars, so their position and timing are self-consistent. We select a large sample of molecular clouds from the simulation to investigate the supernova energy injection and the resulting properties of molecular clouds. We find that molecular clouds have a lifetime of a few dynamical times, less then half of them contract to the point of becoming gravitationally bound, and the dispersal time of bound clouds, of order one dynamical time, is a factor of two shorter than that of unbound clouds. We stress the importance of internal supernovae, that is massive stars that explode inside their parent cloud, in setting the cloud dispersal time, and their huge overdensity compared to models where the supernovae are randomly distributed. We also quantify the energy injection efficiency of supernovae as a function of supernova distance to the clouds. We conclude that intermittent driving by supernovae can maintain molecular-cloud turbulence and may be the main process of cloud dispersal. The role of supernovae in the evolution of molecular clouds cannot be fully accounted for without a self-consistent implementation of their feedback.
We investigate the influence of Wolf-Rayet (W-R) stars on their surrounding star-forming molecular clouds. We study five regions containing W-R stars in the inner Galactic plane ($lsim$[14$^circ$-52$^circ$]), using multi-wavelength data from near-inf rared to radio wavelengths. Analysis of $^{13}$CO line data reveals that these W-R stars have developed gas-deficient cavities in addition to molecular shells with expansion velocities of a few km s$^{-1}$. The pressure owing to stellar winds primarily drives these expanding shells and sweeps up the surrounding matter to distances of a few pc. The column densities of shells are enhanced by a minimum of 14% for one region to a maximum of 88% for another region with respect to the column densities within their central cavities. No active star formation - including molecular condensations, protostars, or ionized gas - is found inside the cavities, whereas such features are observed around the molecular shells. Although the expansion of ionized gas is considered an effective mechanism to trigger star formation, the dynamical ages of the HII regions in our sample are generally not sufficiently long to do so efficiently. Overall, our results hint at the possible importance of negative W-R wind-driven feedback on the gas-deficient cavities, where star formation is quenched as a consequence. In addition, the presence of active star formation around the molecular shells indicates that W-R stars may also assist in accumulating molecular gas, and that they could initiate star formation around those shells.
76 - Y. Miyamoto , N. Nakai , N. Kuno 2013
We have investigated the dynamics of the molecular gas and the evolution of GMAs in the spiral galaxy M51 with the NRO 45-m telescope. The velocity components of the molecular gas perpendicular and parallel to the spiral arms are derived at each spir al phase from the distribution of the line-of-sight velocity of the CO gas. In addition, the shear motion in the galactic disk is determined from the velocity vectors at each spiral phase. It is revealed that the distributions of the shear strength and of GMAs are anti-correlated. GMAs exist only in the area of the weak shear strength and further on the upstream side of the high shear strength. GMAs and most of GMCs exist in the regions where the shear critical surface density is smaller than the gravitational critical surface density, indicating that they can stably grow by self-gravity and the collisional agglomeration of small clouds without being destroyed by shear motion. These indicate that the shear motion is an important factor in evolution of GMCs and GMAs.
We perform ideal MHD high resolution AMR simulations with driven turbulence and self-gravity and find that long filamentary molecular clouds are formed at the converging locations of large-scale turbulence flows and the filaments are bounded by gravi ty. The magnetic field helps shape and reinforce the long filamentary structures. The main filamentary cloud has a length of ~4.4 pc. Instead of a monolithic cylindrical structure, the main cloud is shown to be a collection of fiber/web-like sub-structures similar to filamentary clouds such as L1495. Unless the line-of-sight is close to the mean field direction, the large-scale magnetic field and striations in the simulation are found roughly perpendicular to the long axis of the main cloud, similar to 1495. This provides strong support for a large-scale moderately strong magnetic field surrounding L1495. We find that the projection effect from observations can lead to incorrect interpretations of the true three-dimensional physical shape, size, and velocity structure of the clouds. Helical magnetic field structures found around filamentary clouds that are interpreted from Zeeman observations can be explained by a simple bending of the magnetic field that pierces through the cloud. We demonstrate that two dark clouds form a T-shape configuration which are strikingly similar to the Infrared dark cloud SDC13 leading to the interpretation that SDC13 results from a collision of two long filamentary clouds. We show that a moderately strong magnetic field (M_A ~ 1) is crucial for maintaining a long and slender filamentary cloud for a long period of time ~0.5 million years.
The structure of molecular clouds (MCs) holds important clues on the physical processes that lead to their formation and subsequent evolution. While it is well established that turbulence imprints a self-similar structure to the clouds, other process es, such as gravity and stellar feedback, can break their scale-free nature. The break of self-similarity can manifest itself in the existence of characteristic scales that stand out from the underlying structure generated by turbulent motions. We investigate the structure of the Cygnus-X North and the Polaris MCs which represent two extremes in terms of their star formation activity. We characterize the structure of the clouds using the delta-variance ($Delta$-variance) spectrum. In Polaris, the structure of the cloud is self-similar over more than one order of magnitude in spatial scales. In contrast, the $Delta$-variance spectrum of Cygnus-X exhibits an excess and a plateau on physical scales of ~0.5-1.2 pc. In order to explain the observations for Cygnus-X, we use synthetic maps in which we overlay populations of discrete structures on top of a fractal Brownian motion (fBm) image. The properties of these structures such as their major axis sizes, aspect ratios, and column density contrasts are randomly drawn from parameterized distribution functions. We show that it is possible to reproduce a $Delta$-variance spectrum that resembles the one of the Cygnus-X cloud. We also use a reverse engineering approach in which we extract the compact structures in the Cygnus-X cloud and re-inject them on an fBm map. The calculated $Delta$-variance using this approach deviates from the observations and is an indication that the range of characteristic scales observed in Cygnus-X is not only due to the existence of compact sources, but is a signature of the whole population of structures, including more extended and elongated structures
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا