ﻻ يوجد ملخص باللغة العربية
The caged compound LaRu2Zn20 exhibits a structural transition at TS =150 K, whose driving mechanism remains elusive. We have investigated atomic dynamics by the measurements of specific heat C and inelastic X-ray scattering (IXS). The lattice part of the specific heat Clat divided by T3, Clat/T3, shows a broad peak at around 15 K, which is reproduced by two Einstein modes with characteristic temperatures of 35 K and 82 K, respectively. IXS measurements along the [111] and [110] directions reveal optical phonon modes at 3 meV (35 K) and 7 meV (80 K), respectively, whose values agree with the values of Einstein temperatures. The first principles calculation has assigned the phonon modes at 3 meV as the optical modes of Zn atoms located at the middle of two La atoms. The low-energy vibration of the Zn atom perpendicular to the there-fold axis is thought to lead the structural instability of LaRu2Zn20.
The phonon dynamics of filled skutterudite CeRu4Sb12 have been studied at room temperature by inelastic neutron scattering. Optical phonons associated with a large vibration of Ce atoms are observed at a relatively low energy of E = 6 meV, and show a
A prototypical quasi-2D metallic compound, 1T-TaS_2 has been extensively studied due to an intricate interplay between a Mott-insulating ground state and a charge density-wave (CDW) order. In the low-temperature phase, 12 out of 13 Ta_{4+} 5textit{d}
We report the pressure dependence of the optical response of LaTe$_2$, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pre
We have found that Ce3Pd20As6 crystallizes into a cubic C6Cr23-type structure. Combination of electron probe microanalysis of the chemical composition and Rietveld analysis of the powder X-ray diffraction pattern has revealed an inhomogeneous atomic
We report results from neutron scattering experiments on single crystals of YbBiPt that demonstrate antiferromagnetic order characterized by a propagation vector, $tau_{rm{AFM}}$ = ($frac{1}{2} frac{1}{2} frac{1}{2}$), and ordered moments that align