ترغب بنشر مسار تعليمي؟ اضغط هنا

Walk, Not Wait: Faster Sampling Over Online Social Networks

230   0   0.0 ( 0 )
 نشر من قبل Saravanan Thirumuruganathan
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce a novel, general purpose, technique for faster sampling of nodes over an online social network. Specifically, unlike traditional random walk which wait for the convergence of sampling distribution to a predetermined target distribution - a waiting process that incurs a high query cost - we develop WALK-ESTIMATE, which starts with a much shorter random walk, and then proactively estimate the sampling probability for the node taken before using acceptance-rejection sampling to adjust the sampling probability to the predetermined target distribution. We present a novel backward random walk technique which provides provably unbiased estimations for the sampling probability, and demonstrate the superiority of WALK-ESTIMATE over traditional random walks through theoretical analysis and extensive experiments over real world online social networks.



قيم البحث

اقرأ أيضاً

Random walk-based sampling methods are gaining popularity and importance in characterizing large networks. While powerful, they suffer from the slow mixing problem when the graph is loosely connected, which results in poor estimation accuracy. Random walk with jumps (RWwJ) can address the slow mixing problem but it is inapplicable if the graph does not support uniform vertex sampling (UNI). In this work, we develop methods that can efficiently sample a graph without the necessity of UNI but still enjoy the similar benefits as RWwJ. We observe that many graphs under study, called target graphs, do not exist in isolation. In many situations, a target graph is related to an auxiliary graph and a bipartite graph, and they together form a better connected {em two-layered network structure}. This new viewpoint brings extra benefits to graph sampling: if directly sampling a target graph is difficult, we can sample it indirectly with the assistance of the other two graphs. We propose a series of new graph sampling techniques by exploiting such a two-layered network structure to estimate target graph characteristics. Experiments conducted on both synthetic and real-world networks demonstrate the effectiveness and usefulness of these new techniques.
134 - Dmitry Zinoviev 2014
Instant quality feedback in the form of online peer ratings is a prominent feature of modern massive online social networks (MOSNs). It allows network members to indicate their appreciation of a post, comment, photograph, etc. Some MOSNs support both positive and negative (signed) ratings. In this study, we rated 11 thousand MOSN member profiles and collected user responses to the ratings. MOSN users are very sensitive to peer ratings: 33% of the subjects visited the researchers profile in response to rating, 21% also rated the researchers profile picture, and 5% left a text comment. The grades left by the subjects are highly polarized: out of the six available grades, the most negative and the most positive are also the most popular. The grades fall into three almost equally sized categories: reciprocal, generous, and stingy. We proposed quantitative measures for generosity, reciprocity, and benevolence, and analyzed them with respect to the subjects demographics.
Current social networks are of extremely large-scale generating tremendous information flows at every moment. How information diffuse over social networks has attracted much attention from both industry and academics. Most of the existing works on in formation diffusion analysis are based on machine learning methods focusing on social network structure analysis and empirical data mining. However, the dynamics of information diffusion, which are heavily influenced by network users decisions, actions and their socio-economic interactions, is generally ignored by most of existing works. In this paper, we propose an evolutionary game theoretic framework to model the dynamic information diffusion process in social networks. Specifically, we derive the information diffusion dynamics in complete networks, uniform degree and non-uniform degree networks, with the highlight of two special networks, ErdH{o}s-Renyi random network and the Barabasi-Albert scale-free network. We find that the dynamics of information diffusion over these three kinds of networks are scale-free and the same with each other when the network scale is sufficiently large. To verify our theoretical analysis, we perform simulations for the information diffusion over synthetic networks and real-world Facebook networks. Moreover, we also conduct experiment on Twitter hashtags dataset, which shows that the proposed game theoretic model can well fit and predict the information diffusion over real social networks.
In the past decade, blogging web sites have become more sophisticated and influential than ever. Much of this sophistication and influence follows from their network organization. Blogging social networks (BSNs) allow individual bloggers to form cont act lists, subscribe to other blogs, comment on blog posts, declare interests, and participate in collective blogs. Thus, a BSN is a bimodal venue, where users can engage in publishing (post) as well as in social (make friends) activities. In this paper, we study the co-evolution of both activities. We observed a significant positive correlation between blogging and socializing. In addition, we identified a number of user archetypes that correspond to mainly bloggers, mainly socializers, etc. We analyzed a BSN at the level of individual posts and changes in contact lists and at the level of trajectories in the friendship-publishing space. Both approaches produced consistent results: the majority of BSN users are passive readers; publishing is the dominant active behavior in a BSN; and social activities complement blogging, rather than compete with it.
Given a large population, it is an intensive task to gather individual preferences over a set of alternatives and arrive at an aggregate or collective preference of the population. We show that social network underlying the population can be harnesse d to accomplish this task effectively, by sampling preferences of a small subset of representative nodes. We first develop a Facebook app to create a dataset consisting of preferences of nodes and the underlying social network, using which, we develop models that capture how preferences are distributed among nodes in a typical social network. We hence propose an appropriate objective function for the problem of selecting best representative nodes. We devise two algorithms, namely, Greedy-min which provides a performance guarantee for a wide class of popular voting rules, and Greedy-sum which exhibits excellent performance in practice. We compare the performance of these proposed algorithms against random-polling and popular centrality measures, and provide a detailed analysis of the obtained results. Our analysis suggests that selecting representatives using social network information is advantageous for aggregating preferences related to personal topics (e.g., lifestyle), while random polling with a reasonable sample size is good enough for aggregating preferences related to social topics (e.g., government policies).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا