ترغب بنشر مسار تعليمي؟ اضغط هنا

The VMC Survey. XIII. Type II Cepheids in the Large Magellanic Cloud

131   0   0.0 ( 0 )
 نشر من قبل Vincenzo Ripepi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The VISTA survey of the Magellanic Clouds System (VMC) is collecting deep $K_mathrm{s}$--band time--series photometry of the pulsating variable stars hosted in the system formed by the two Magellanic Clouds and the Bridge connecting them. In this paper we have analysed a sample of 130 Large Magellanic Cloud (LMC) Type II Cepheids (T2CEPs) found in tiles with complete or near complete VMC observations for which identification and optical magnitudes were obtained from the OGLE III survey. We present $J$ and $K_mathrm{s}$ light curves for all 130 pulsators, including 41 BL Her, 62 W Vir (12 pW Vir) and 27 RV Tau variables. We complement our near-infrared photometry with the $V$ magnitudes from the OGLE III survey, allowing us to build a variety of Period-Luminosity ($PL$), Period-Luminosity-Colour ($PLC$) and Period-Wesenheit ($PW$) relationships, including any combination of the $V, J, K_mathrm{s}$ filters and valid for BL Her and W Vir classes. These relationships were calibrated in terms of the LMC distance modulus, while an independent absolute calibration of the $PL(K_mathrm{s})$ and the $PW(K_mathrm{s},V)$ was derived on the basis of distances obtained from $Hubble Space Telescope$ parallaxes and Baade-Wesselink technique. When applied to the LMC and to the Galactic Globular Clusters hosting T2CEPs, these relations seem to show that: 1) the two population II standard candles RR Lyrae and T2CEPs give results in excellent agreement with each other; 2) there is a discrepancy of $sim$0.1 mag between population II standard candles and Classical Cepheids when the distances are gauged in a similar way for all the quoted pulsators. However, given the uncertainties, this discrepancy is within the formal 1$sigma$ uncertainties.

قيم البحث

اقرأ أيضاً

We present Ks -band light curves for 299 Cepheids in the Small Magellanic Cloud (SMC) of which 288 are new discoveries that we have identified using multi-epoch near-infrared photometry obtained by the VISTA survey of the Magellanic Clouds system (VM C). The new Cepheids have periods in the range from 0.34 to 9.1 days and cover the magnitude interval 12.9 <= Ks <= 17.6 mag. Our method was developed using variable stars previously identified by the optical microlensing survey OGLE. We focus on searching new Cepheids in external regions of the SMC for which complete VMC Ks-band observations are available and no comprehensive identification of different types of variable stars from other surveys exists yet.
Studies of young stellar objects (YSOs) in the Galaxy have found that a significant fraction exhibit photometric variability. However, no systematic investigation has been conducted on the variability of extragalactic YSOs. Here we present the first variability study of massive YSOs in a $sim 1.5,mathrm{deg^2}$ region of the Large Magellanic Cloud (LMC). The aim is to investigate whether the different environmental conditions in the metal-poor LMC ($sim$ 0.4-0.5 Z_sun) have an impact on the variability characteristics. Multi-epoch near-infrared (NIR) photometry was obtained from the VISTA Survey of the Magellanic Clouds (VMC) and our own monitoring campaign using the VISTA telescope. By applying a reduced $chi^2$-analysis, stellar variability was identified. We found 3062 candidate variable stars from a population of 362 425 stars detected. Based on several Spitzer studies, we compiled a sample of high-reliability massive YSOs: a total of 173 massive YSOs have NIR counterparts ($K_{mathrm{s}}sim 18.5,$mag) in the VMC catalogue, of which 39 display significant ($>3sigma$) variability. They have been classified as eruptive, fader, dipper, short-term variable and long-period variable YSOs based mostly on the appearance of their $K_{mathrm{s}}$ band light curves. The majority of YSOs are aperiodic, only five YSOs exhibit periodic lightcurves. The observed amplitudes are comparable or smaller than those for Galactic YSOs (only two Magellanic YSOs exhibit $Delta K_{mathrm{s}}>1,$mag), not what would have been expected from the typically larger mass accretion rates observed in the Magellanic Clouds.
The VISTA near-infrared YJKs survey of the Magellanic System (VMC) is collecting deep Ks-band time-series photometry of pulsating stars hosted by the two Magellanic Clouds and their connecting Bridge. Here we present YJKs light curves for a sample of 717 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with our previous results and V magnitude from literature, allowed us to construct a variety of period-luminosity and period-Wesenheit relationships, valid for Fundamental, First and Second Overtone pulsators. These relations provide accurate individual distances to CCs in the SMC over an area of more than 40 sq. deg. Adopting literature relations, we estimated ages and metallicities for the majority of the investigated pulsators, finding that: i) the age distribution is bimodal, with two peaks at 120+-10 and 220+-10 Myr; ii) the more metal-rich CCs appear to be located closer to the centre of the galaxy. Our results show that the three-dimensional distribution of the CCs in the SMC, is not planar but heavily elongated for more than 25-30 kpc approximately in the east/north-east towards south-west direction. The young and old CCs in the SMC show a different geometric distribution. Our data support the current theoretical scenario predicting a close encounter or a direct collision between the Clouds some 200 Myr ago and confirm the presence of a Counter-Bridge predicted by some models. The high precision three-dimensional distribution of young stars presented in this paper provides a new testbed for future models exploring the formation and evolution of the Magellanic System.
264 - Viktor Zivkov 2018
Detailed studies of intermediate/low mass pre-main sequence (PMS) stars outside the Galaxy have so far been conducted only for small targeted regions harbouring known star formation complexes. The VISTA Survey of the Magellanic Clouds (VMC) provides an opportunity to study PMS populations down to solar masses on a galaxy-wide scale. Our goal is to use near-infrared data from the VMC survey to identify and characterise PMS populations down to ~1 M_sun across the Magellanic Clouds. We present our colour-magnitude diagram method, and apply it to a ~1.5 deg^2 pilot field located in the Large Magellanic Cloud. The pilot field is divided into equally-sized grid elements. We compare the stellar population in every element with the population in nearby control fields by creating K_s/(Y-K_s) Hess diagrams; the observed density excesses over the local field population are used to classify the stellar populations. Our analysis recovers all known star formation complexes in this pilot field (N44, N51, N148 and N138) and for the first time reveals their true spatial extent. In total, around 2260 PMS candidates with ages $lesssim$ 10 Myr are found in the pilot field. PMS structures, identified as areas with a significant density excess of PMS candidates, display a power-law distribution of the number of members with a slope of -0.86+-0.12. We find a clustering of the young stellar populations along ridges and filaments where dust emission in the far-infrared (FIR) (70 micron - 500 micron) is bright. Regions with young populations lacking massive stars show a lesser degree of clustering and are usually located in the outskirts of the star formation complexes. At short FIR wavelengths (70 micron, 100 micron) we report a strong dust emission increase in regions hosting young massive stars, which is less pronounced in regions populated only by less massive ($lesssim$ 4 M_sun) PMS stars.
We present the results of the chi2 minimization model fitting technique applied to optical and near-infrared photometric and radial velocity data for a sample of 9 fundamental and 3 first overtone classical Cepheids in the Small Magellanic Cloud (SMC ). The near- infrared photometry (JK filters) was obtained by the European Southern Observatory (ESO) public survey VISTA near-infrared Y; J;Ks survey of the Magellanic Clouds system(VMC). For each pulsator isoperiodic model sequences have been computed by adopting a nonlinear convective hydrodynamical code in order to reproduce the multi- filter light and (when available) radial velocity curve amplitudes and morphological details. The inferred individual distances provide an intrinsic mean value for the SMC distance modulus of 19.01 mag and a standard deviation of 0.08 mag, in agreement with the literature. Moreover the instrinsic masses and luminosities of the best fitting model show that all these pulsators are brighter than the canonical evolutionary Mass- Luminosity relation (MLR), suggesting a significant efficiency of core overshooting and/or mass loss. Assuming that the inferred deviation from the canonical MLR is only due to mass loss, we derive the expected distribution of percentage mass loss as a function of both the pulsation period and of the canonical stellar mass. Finally, a good agreement is found between the predicted mean radii and current Period-Radius (PR) relations in the SMC available in the literature. The results of this investigation support the predictive capabilities of the adopted theoretical scenario and pave the way to the application to other extensive databases at various chemical compositions, including the VMC Large Magellanic Cloud pulsators and Galactic Cepheids with Gaia parallaxes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا