ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental research on the feature of an X-ray Talbot-Lau interferometer vs. tube accelerating voltage

134   0   0.0 ( 0 )
 نشر من قبل Shenghao Wang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray Talbot-Lau interferometer has been used most widely to perform X-ray phase-contrast imaging with a conventional low-brilliance X-ray source, it yields high-sensitivity phase and dark-field images of sample producing low absorption contrast, thus bearing tremendous potential for future clinical diagnosis. In this manuscript, while changing accelerating voltage of the X-ray tube from 35KV to 45KV, X-ray phase-contrast imaging of a test sample were performed at each integer KV position to investigate the characteristic of an X-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) vs. tube voltage. Experimental results and data analysis show that this X-ray Talbot-Lau interferometer is insensitive to the tube accelerating voltage within a certain range, fringe visibility around 44% is maintained in the aforementioned tube voltage range. This experimental research implies that potential new dual energy phase-contrast X-ray imaging strategy and rough refraction spectrum measurement is feasible with this X-ray Talbot-Lau interferometer.


قيم البحث

اقرأ أيضاً

X-ray Talbot-Lau interferometer has been used widely to conduct phase contrast imaging with a conventional low-brilliance x-ray source. Typically, in this technique, background correction has to be performed in order to obtain the pure signal of the sample under inspection. In this study, we reported on a research on the background correction strategies within this technique, especially we introduced a new phase unwrapping solution for one conventional background correction method, the key point of this new solution is changing the initial phase of each pixel by a cyclic shift operation on the raw images collected in phase stepping scan. Experimental result and numerical analysis showed that the new phase unwrapping algorithm could successfully subtract contribution of the systems background without error. Moreover, a potential advantage of this phase unwrapping strategy is that its effective phase measuring range could be tuned flexibly in some degree for example to be (-pi+3, pi+3], thus it would find usage in certain case because measuring range of the currently widely used background correction method is fixed to be (-pi, pi].
We present a theoretical framework to describe the effects of decoherence on matter waves in Talbot-Lau interferometry. Using a Wigner description of the stationary beam the loss of interference contrast can be calculated in closed form. The formulat ion includes both the decohering coupling to the environment and the coherent interaction with the grating walls. It facilitates the quantitative distinction of genuine quantum interference from the expectations of classical mechanics. We provide realistic microscopic descriptions of the experimentally relevant interactions in terms of the bulk properties of the particles and show that the treatment is equivalent to solving the corresponding master equation in paraxial approximation.
We demonstrate the fractional Talbot effect of nonpraxial accelerating beams, theoretically and numerically. It is based on the interference of nonparaxial accelerating solutions of the Helmholtz equation in two dimensions. The effect originates from the interfering lobes of a superposition of the solutions that accelerate along concentric semicircular trajectories with different radii. Talbot images form along certain central angles, which are referred to as the Talbot angles. The fractional nonparaxial Talbot effect is obtained by choosing the coefficients of beam components properly. A single nonparaxial accelerating beam possesses duality --- it can be viewed as a Talbot effect of itself with an infinite or zero Talbot angle. These results improve the understanding of nonparaxial accelerating beams and the Talbot effect among them.
Recent progress in matter-wave interferometry aims to directly probe the quantum properties of matter on ever increasing scales. However, in order to perform interferometric experiments with massive mesoscopic objects, taking into account the constra ints on the experimental set-ups, the point-like particle approximation needs to be cast aside. In this work, we consider near-field interferometry based on the Talbot effects with a single optical grating for large spherical particles beyond the point-particle approximation. We account for the suppression of the coherent grating effect and, at the same time, the enhancement of the decoherence effects due to scattering and absorption of grating photons.
We introduce an idea of producing an optical lattice relied on the Talbot effect. Our alternative scheme is based on the interference of light behind a diffraction grating in the near-field regime. We demonstrate 1-D and 2-D optical lattices with the simulations and experiments. This Talbot optical lattice can be broadly used from quantum simulations to quantum information. The Talbot effect is usually used in lensless optical systems, therefore it provides small aberrations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا