ﻻ يوجد ملخص باللغة العربية
Phase transitions are uncommon among homogenous one-dimensional fluids of classical particles owing to a general non-existence result due to van Hove. A way to circumvent van Hoves theorem is to consider an interparticle potential that is finite everywhere. Of this type is the generalized exponential model of index 4 (GEM4 potential), a model interaction which in three dimensions provides an accurate description of the effective pair repulsion between dissolved soft macromolecules (e.g., flexible dendrimers). Using specialized free-energy methods, I reconstruct the equilibrium phase diagram of the one-dimensional GEM4 system, showing that, apart from the usual fluid phase at low densities, it consists of an endless sequence of {em cluster fluid phases} of increasing pressure, having a sharp crystal appearance for low temperatures. The coexistence line between successive phases in the sequence invariably terminates at a critical point. Focussing on the first of such transitions, I show that the growth of the 2-cluster phase from the metastable ordinary fluid is extremely slow, even for large supersaturations. Finally, I clarify the apparent paradox of the observation of an activation barrier to nucleation in a system where, due to the dimensionality of the hosting space, the critical radius is expected to vanish.
We propose a unifying, analytical theory accounting for the self-organization of colloidal systems in nano- or micro-cluster phases. We predict the distribution of cluter sizes with respect to interaction parameters and colloid concentration. In part
For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallization and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase di
The equilibrium properties of hard rod monolayers are investigated in a lattice model (where position and orientation of a rod are restricted to discrete values) as well as in an off--lattice model featuring spherocylinders with continuous positional
Growth of hard--rod monolayers via deposition is studied in a lattice model using rods with discrete orientations and in a continuum model with hard spherocylinders. The lattice model is treated with kinetic Monte Carlo simulations and dynamic densit
A liquid meniscus, a bending rod (also called elastica) and a simple pendulum are all described by the same non-dimensional equation. The oscillatory regime of the pendulum corresponds to buckling rods and pendant drops, and the high-velocity regime