ﻻ يوجد ملخص باللغة العربية
Current helicity and twist of solar magnetic fields are important quantities to characterize the dynamo mechanism working in the convection zone of the Sun. We have carried out a statistical study on the current helicity of solar active regions observed with the Spectro-Polarimeter (SP) of Hinode Solar Optical Telescope (SOT). We used SOT-SP data of 558 vector magnetograms of a total of 80 active regions obtained from 2006 to 2012. We have applied spatial smoothing and division of data points into weak and strong field ranges to compare the contributions from different scales and field strengths. We found that the current helicity follows the so-called hemispheric sign rule when the weak magnetic fields (absolute field strength $< 300$ gauss) are considered and no smoothing is applied. On the other hand, the pattern of current helicity fluctuates and violates the hemispheric sign rule when stronger magnetic fields are considered and the smoothing of 2.0 arcsec (mimicking ground-based observations) is applied. Furthermore, we found a tendency that the weak and inclined fields better conform to and the strong and vertical fields tend to violate the hemispheric sign rule. These different properties of helicity through the strong and weak magnetic field components give important clues to understanding the solar dynamo as well as the mechanism of formation and evolution of solar active regions.
The current helicity in solar active regions derived from vector magnetograph observations for more than 20 years indicates the so-called hemispheric sign rule; the helicity is predominantly negative in the northern hemisphere and positive in the sou
The electric current helicity density $displaystyle chi=langleepsilon_{ijk}b_ifrac{partial b_k}{partial x_j}rangle$ contains six terms, where $b_i$ are components of the magnetic field. Due to the observational limitations, only four of the above six
We use observations of line-of-sight magnetograms from Helioseismic and Magnetic Imager (HMI) on board of Solar Dynamics Observatory (SDO) to investigate polarity separation, magnetic flux, flux emergence rate, twist and tilt of solar emerging active
The tilt angle, current helicity and twist of solar magnetic fields can be observed in solar active regions. We carried out estimates of these parameters by two ways. Firstly, we consider the model of turbulent convective cells (super-granules) which
We demonstrate that the current helicity observed in solar active regions traces the magnetic helicity of the large-scale dynamo generated field. We use an advanced 2D mean-field dynamo model with dynamo saturation based on the evolution of the magne