ترغب بنشر مسار تعليمي؟ اضغط هنا

Looking for milli-charged particles with a new experiment at the LHC

127   0   0.0 ( 0 )
 نشر من قبل Eder Izaguirre
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new experiment at the Large Hadron Collider (LHC) that offers a powerful and model-independent probe for milli-charged particles. This experiment could be sensitive to charges in the range $10^{-3}e - 10^{-1}e$ for masses in the range $0.1 - 100$ GeV, which is the least constrained part of the parameter space for milli-charged particles. This is a new window of opportunity for exploring physics beyond the Standard Model at the LHC.


قيم البحث

اقرأ أيضاً

105 - Jae Hyeok Yoo 2018
Recently, a search for milli-charged particles produced at the LHC has been proposed. The experiment, named milliQan, is expected to obtain sensitivity to charges of $10^{- 1} - 10^{-3}e$ for masses in the 0.1 - 100 GeV range. The detector is compose d of 3 stacks of 80 cm long plastic scintillator arrays read out by PMTs. It will be installed in an existing tunnel 33 m from the CMS interaction point at the LHC, with 17 m of rock shielding to suppress beam backgrounds. In the fall of 2017 a 1% scale demonstrator of the proposed detector was installed at the planned site in order to study the feasibility of the experiment, focusing on understanding various background sources such as radioactivity of materials, PMT dark current, cosmic rays, and beam induced backgrounds. The data from the demonstrator provides a unique opportunity to understand the backgrounds and to optimize the design of the full detector.
134 - Anson Hook , Junwu Huang 2017
Milli-magnetically charged particles generically appear in scenarios with kinetic mixing. We present model independent bounds on these particles coming from magnetars. Schwinger pair production discharges the magnetic field of the magnetar. Thus the existence of large magnetic fields at magnetars place strong bounds on the milli-magnetic charge to be smaller than $10^{-18}$ over a large mass range.
Vectorlike quarks have been shown to resolve certain long-standing discrepancies pertaining to the bottom sector. We investigate, here, the prospects of identifying the existence of a topless vectorlike doublet $(B,~Y)$, as is preferred by the electr oweak precision measurements. Concentrating on single production, $viz.$ $B bar b$ with $B to b + Z/H$ subsequently, we find that the fully hadronic decay-channel is susceptible to discovery provided jet substructure observables are used. At the 13 TeV LHC with an integrated luminosity of 300 fb$^{-1}$, a modest value of the chromomagnetic transition moments allows for the exclusion of $M lesssim 1.8(2.2)$ TeV in the $Z$ and $H$ channels respectively.
In this LOI we propose a dedicated experiment that would detect milli-charged particles produced by pp collisions at LHC Point 5. The experiment would be installed during LS2 in the vestigial drainage gallery above UXC and would not interfere with CM S operations. With 300 fb$^{-1}$ of integrated luminosity, sensitivity to a particle with charge $mathcal{O}(10^{-3})~e$ can be achieved for masses of $mathcal{O}(1)$ GeV, and charge $mathcal{O}(10^{-2})~e$ for masses of $mathcal{O}(10)$ GeV, greatly extending the parameter space explored for particles with small charge and masses above 100 MeV.
The multi-TeV proton and ion beams of the LHC would allow for the most energetic fixed-target experiment ever. In particular, $pp$, $p$d and $p$A collisions could be performed at $sqrt{s_{NN}}$ = 115~GeV, as well as Pb$p$ and PbA collisions at $sqrt{ s_{NN}}$ = 72~GeV, in a parasitic way by making use of the already existing LHCb and ALICE detectors in fixed-target mode. This would offer the possibility to carry out a ground-breaking physics program, to study the nucleon and nuclear structure at high $x$, the spin content of the nucleon and the phases of the nuclear matter from a new rapidity viewpoint. In this talk I focus on the spin physics axis of the full program developed so far by the AFTER@LHC study group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا