ﻻ يوجد ملخص باللغة العربية
We suggest and verify a new photometric method enabling derivation of relative thickness of a galactic disk from two-dimensional surface-brightness distribution of the galaxy in the plane of the sky. The method is applied to images of 45 early-type (S0-Sb) galaxies with known radial exponential or double-exponential (with a flatter outer profile) surface-brightness distributions. The data in the r-band have been retrieved from the SDSS archive. Statistics of the estimated relative thicknesses of the stellar disks of early-type disk galaxies shows the following features. The disks of lenticular and early-type spiral galaxies have similar thicknesses. The presence of a bar results in only a slight marginal increase of the thickness. However, we have found a substantial difference between the thicknesses of the disks with a single-scaled exponential brightness profile and the disks that represent the inner segments of the Type III (antitruncated) profiles. The disks are significantly thicker in the former subsample than in the latter one. This may provide evidence for a surface-brightness distribution of a single-scaled exponential disk to be formed due to viscosity effects acting over the entire period of star formation in the disk.
The late assembly of massive galaxies is thought to be dominated by stellar accretion in their outskirts (beyond 2 effective radii Re) due to dry, minor galaxy mergers. We use observations of 1010 passive early-type galaxies (ETGs) within z<0.15 from
Using the exquisite depth of the Hubble Ultra Deep Field (HUDF12 programme) dataset, we explore the ongoing assembly of the outermost regions of the most massive galaxies ($rm M_{rm stellar}geq$ 5$times$10$^{10}$ M$_{odot}$) at $z leq$ 1. The outskir
We present a spectroscopic analysis based on measurements of two mainly age-dependent spectrophotometric indices in the 4000A rest frame region, i.e. H+K(CaII) and Delta4000, for a sample of 15 early-type galaxies (ETGs) at 0.7 < z_{spec} < 1.1, morp
Recent work suggests blue ellipticals form in mergers and migrate quickly from the blue cloud of star-forming galaxies to the red sequence of passively evolving galaxies, perhaps as a result of black hole feedback. Such rapid reddening of stellar pop
It is currently impossible to determine the abundances of stellar populations star-by-star in dense stellar systems more distant than a few megaparsecs. Therefore, methods to analyse the composite light of stellar systems are required. I review recen