ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero Mode Tunnelling in a Fractional Quantum Hall Device

40   0   0.0 ( 0 )
 نشر من قبل Stephanie Huntington
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tunnelling measurements on fractional quantum Hall systems are continuing to increase in popularity since they provide a method to probe the non-Fermi liquid behaviour of fractionally charged excitations occupying the edge states of a quantum Hall system. When considering tunnelling one must resort to an effective theory and typically a phenomenological tunnelling Hamiltonian is used analogous to that used for a conventional Luttinger liquid. It is the form of this tunnelling Hamiltonian that is investigated in this work by making a comparison to an exact microscopic calculation of the zero mode tunnelling matrix elements. The computation is performed using Monte Carlo and results were obtained for various system sizes for the $ u=1/3$ Laughlin state. Here we also present a solution to overcome the phase problem experienced in Monte Carlo calculations using Laughlin-type wavefunctions. Comparing the system size dependence of the microscopic and phenomenological calculations for the tunnelling matrix elements, it was found that only for a particular type of operator ordering in the tunnelling Hamiltonian was it possible to make a good match to the numerical calculations. From the Monte Carlo data it is also clear that for any system size the electron tunnelling is always less relevant than the quasiparticle tunnelling process, supporting the idea that when considering tunnelling at a weak barrier, the electron tunnelling process can be neglected.


قيم البحث

اقرأ أيضاً

Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We find quantum Hall states in the Composite Fermion family and a precursor signal at filling fra ction $ u=5/2$. We analyse the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarised Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.
62 - S. Dickmann 2017
A spin-rotation mode emerging in a quantum Hall ferromagnet due to laser pulse excitation is studied. This state, macroscopically representing a rotation of the entire electron spin-system to a certain angle, is not microscopically equivalent to a co herent turn of all spins as a single-whole and is presented in the form of a combination of eigen quantum states corresponding to all possible S_z spin numbers. The motion of the macroscopic quantum state is studied microscopically by solving a non-stationary Schroedinger equation and by means of a kinetic approach where damping of the spin-rotation mode is related to an elementary process, namely, transformation of a `Goldstone spin exciton to a `spin-wave exciton. The system exhibits a spin stochastizationa mechanism (determined by spatial fluctuations of the Lande g-factor) ensuring damping, transverse spin relaxation, but irrelevant to decay of spin-wave excitons and thus not involving longitudinal relaxation, i.e., recovery of the S_z number to its equilibrium value.
We report the observation of the fractional quantum Hall effect in the lowest Landau level of a two-dimensional electron system (2DES), residing in the diluted magnetic semiconductor Cd(1-x)Mn(x)Te. The presence of magnetic impurities results in a gi ant Zeeman splitting leading to an unusual ordering of composite fermion Landau levels. In experiment, this results in an unconventional opening and closing of fractional gaps around filling factor v = 3/2 as a function of an in-plane magnetic field, i.e. of the Zeeman energy. By including the s-d exchange energy into the composite Landau level spectrum the opening and closing of the gap at filling factor 5/3 can be modeled quantitatively. The widely tunable spin-splitting in a diluted magnetic 2DES provides a novel means to manipulate fractional states.
We study a model of a quantum dot coupled to a quantum Hall edge of the Laughlin state, taking into account short-range interactions between the dot and the edge. This system has been studied experimentally in electron quantum optics in the context o f single particle sources. We consider driving the dot out of equilibrium by a time-dependent bias voltage. We calculate the resulting current on the edge by applying the Kubo formula to the bosonized Hamiltonian. The Hamiltonian of this system can also be mapped to the spin-boson model and in this picture, the current can be perturbatively calculated using the non-interacting blip approximation (NIBA). We show that both methods of solution are in fact equivalent. We present numerics demonstrating that the perturbative approaches capture the essential physics at early times, although they fail to capture the charge quantization (or lack thereof) in the current pulses integrated over long times.
Experimental and theoretical studies of the coherent spin dynamics of two-dimensional GaAs/AlGaAs electron gas were performed. The system in the quantum Hall ferromagnet state exhibits a spin relaxation mechanism that is determined by many-particle C oulomb interactions. In addition to the spin exciton with changes in the spin quantum numbers of $delta S!=!delta S_z !=!-1$, the quantum Hall ferromagnet supports a Goldstone spin exciton that changes the spin quantum numbers to $delta S!=!0$ and $delta S_z!=!-1$, which corresponds to a coherent spin rotation of the entire electron system to a certain angle. The Goldstone spin exciton decays through a specific relaxation mechanism that is unlike any other collective spin state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا