ترغب بنشر مسار تعليمي؟ اضغط هنا

Quirks and strings attached as the ultimate communication and acceleration devices

35   0   0.0 ( 0 )
 نشر من قبل Shmuel Nussinov
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Shmuel Nussinov




اسأل ChatGPT حول البحث

We point out that if a certain variant of Quirks, particles that carry ordinary color and some other color exist, then we can have a completely novel and efficient mode of long distance communications and of acceleration to very high energies. For very low scale $Lambda$ the scale of the new gauge group in the theory, and associated string tension of the new color the Quirks can be captured in ordinary materials. Having then the Quirk Q and anti-Quirk $bar{Q}$ in two separate piezoelectric crystals at arbitrarily far out points A and B allows Alice and Bob at these locations to communicate by generating transverse waves along the connecting color string. Also releasing the Quirks allows them to collide at extremely high energies.

قيم البحث

اقرأ أيضاً

In the present paper, assuming the Multiple Point Principle (MPP) as a new law of Nature, we considered the existence of the two degenerate vacua of the Universe: a) the first Electroweak (EW) vacuum at $v_1approx 246$ GeV -- true vacuum, and b) the second Planck scale false vacuum at $v_2 sim 10^{18}$ GeV. In these vacua we investigated different topological defects. The main aim of this paper is an investigation of the black-hole-hedgehogs configurations as defects of the false vacuum. In the framework of the $f(R)$ gravity, described by the Gravi-Weak unification model, we considered a black-hole solution, which corresponds to a hedgehog -- global monopole, that has been swallowed by the black-hole with mass core $M_{BH}sim 10^{18}$ GeV and radius $deltasim 10^{-21}$ GeV$^{-1}$. Considering the results of the hedgehog lattice theory in the framework of the $SU(2)$ Yang-Mills gauge-invariant theory with hedgehogs in the Wilson loops, we have used the critical value of temperature for the hedgehogs confinement phase ($T_csim 10^{18}$ GeV). This result gave us the possibility to conclude that the SM shows a new physics (with contributions of the $SU(2)$-triplet Higgs bosons) at the scale $sim 10$ TeV. Theory predicts the stability of the EW-vacuum and the accuracy of the MPP.
We develop techniques to compute the one-loop anomalous dimensions of operators in the ${cal N}=4$ super Yang-Mills theory that are dual to open strings ending on boundstates of sphere giant gravitons. Our results, which are applicable to excitations involving an arbitrary number of open strings, generalize the single string results of hep-th/0701067. The open strings we consider carry angular momentum on an S$^3$ embedded in the S$^5$ of the AdS$_5times$S$^5$ background. The problem of computing the one loop anomalous dimensions is replaced with the problem of diagonalizing an interacting Cuntz oscillator Hamiltonian. Our Cuntz oscillator dynamics illustrates how the Chan-Paton factors for open strings propagating on multiple branes can arise dynamically.
We consider magnetic monopoles and strings that appear in non-supersymmetric $SO(10)$ and $E_6$ grand unified models paying attention to gauge coupling unification and proton decay in a variety of symmetry breaking schemes. The dimensionless string t ension parameter $Gmu$ spans the range $10^{-6}-10^{-30}$, where $G$ is Newtons constant and $mu$ is the string tension. We show how intermediate scale monopoles with mass $sim 10^{13}-10^{14}$ GeV and flux $lesssim 2.8times 10^{-16}$ ${mathrm{cm}^{-2}mathrm{s}^{-1}mathrm{sr}^{-1}}$, and cosmic strings with $Gmu sim 10^{-11}-10^{-10}$ survive inflation and are present in the universe at an observable level. We estimate the gravity wave spectrum emitted from cosmic strings taking into account inflation driven by a Coleman-Weinberg potential. The tensor-to-scalar ratio $r$ lies between $0.06$ and $0.003$ depending on the details of the inflationary scenario.
92 - G. Lazarides , Q. Shafi 2019
We employ a variety of symmetry breaking patterns in $SO(10)$ and $E_6$ Grand Unified Theories to demonstrate the appearance of topological defects including magnetic monopoles, strings, and necklaces. We show that independent of the symmetry breakin g pattern, a topologically stable superheavy monopole carrying a single unit of Dirac charge as well as color magnetic charge is always present. Lighter intermediate mass topologically stable monopoles carrying two or three quanta of Dirac charge can appear in $SO(10)$ and $E_6$ models respectively. These lighter monopoles as well as topologically stable intermediate scale strings can survive an inflationary epoch. We also show the appearance of a novel necklace configuration in $SO(10)$ broken to the Standard Model via $SU(4)_ctimes SU(2)_Ltimes SU(2)_R$. It consists of $SU(4)_c$ and $SU(2)_R$ monopoles connected by flux tubes. Necklaces consisting of monopoles and antimonopoles joined together by flux tubes are also identified. Even in the absence of topologically stable strings, a monopole-string system can temporarily appear. This system decays by emitting gravity waves and we provide an example in which the spectrum of these waves is strongly peaked around $10^{-4}~{rm Hz}$ with $Omega_{rm gw}h^2simeq 10^{-12}$. This spectrum should be within the detection capability of LISA.
We present a new auxiliary field representation for the four-fermi term of the gauge-fixed Green-Schwarz superstring action which describes fluctuations around the null-cusp background in $AdS_5times S^5$. We sketch the main features of the fermionic operator spectrum, identifying the region of parameter space where the sign ambiguity is absent. Measurements for the observables in the setup here described are presented and discussed in a forthcoming publication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا