ترغب بنشر مسار تعليمي؟ اضغط هنا

Sample of optically unidentified X-ray binaries in the Galactic bulge. Constraints on the physical nature from infrared photometric surveys

97   0   0.0 ( 0 )
 نشر من قبل Ivan Zolotukhin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the archival near-infrared and mid-infrared observations of 7 persistent X-ray sources situated in the Galactic bulge using data from the UKIRT Infrared Deep Sky Survey (UKIDSS), Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) and the Wide-field Infrared Survey Explorer (WISE) all-sky survey. We were able to successfully identify, or provide upper flux limits for the systems SAX J1747.0-2853, IGR J17464-2811, AX J1754.2-2754, IGR J17597-2201, IGR J18134-1636, IGR J18256-1035, Ser X-1 and constrain the nature of these systems. In the case of IGR J17597-2201 we present arguments that the source accretes matter from the stellar wind rather than via Roche lobe overflow of the secondary. We suggest that, at its X-ray luminosity of $10^{34-35}$ erg s$^{-1}$, we are probing the poorly known class of wind-fed low-mass X-ray binaries (LMXBs).



قيم البحث

اقرأ أيضاً

We report on the archival optical and near-infrared observations of 6 low mass X-ray binaries situated in the Galactic bulge. We processed several recent Chandra and XMM-Newton as well as Einstein datasets of a binary systems suspected to be ultracom pact, which gave us arcsec-scale positional uncertainty estimates. We then undertook comprehensive search in existing archives and other Virtual Observatory resources in order to discover unpublished optical/NIR data on these objects. We found and analysed data from ESO Archive and UKIRT Infrared Deep Sky Survey (UKIDSS) on SLX 1735-269, 3A 1742-294, SLX 1744-299, SLX 1744-300, GX 3+1, IGR J17505-2644 systems and publish their finding charts and optical flux constraints in this paper, as well as simple estimates of the physical parameters of these objects.
211 - G. Ter-Kazarian 2015
To reconcile the observed unusual high luminosity of NuSTAR X-ray pulsations from M82X-2 with the most extreme violation of the Eddington limit, and in view that the persistent X-ray radiation from M82X-2 almost precludes the possibility of common pu lsars, we tackle the problem by the implications of {em microscopic theory of black hole} (MTBH). The preceding developments of MTBH are proved to be quite fruitful for the physics of ultra-high energy (UHE) cosmic-rays. Namely, replacing a central singularity by the infrastructures inside event horizon, subject to certain rules, MTBH explains the origin of ZeV-neutrinos which are of vital interest for the source of UHE-particles. The M82X-2 is assumed to be a spinning intermediate mass black hole resided in final stage of growth. As a corollary, the thermal blackbody X-ray emission arisen due to the rotational kinetic energy of black hole escapes from event horizon through the vista to outside world that detected as ultraluminous X-ray pulsations. The M82X-2 indeed releases $sim 99.6%$ of its pulsed radiative energy predominantly in the X-ray bandpass $0.3-30$ keV. We derive a pulse profile and give a quantitative account of energetics and orbital parameters of the semi-detached X-ray binary containing a primary accretor M82X-2 of inferred mass $Msimeq 138.5-226,M_{odot}$ and secondary massive, $M_{2}> 48.3- 64.9,M_{odot}$, O/B-type donor star with radius of $R> 22.1- 25.7,R_{odot}$, respectively. We compute the torque added to M82X-2 per unit mass of accreted matter which yields the measured spin-up rate.
X-ray spectral analysis of quiescent low-mass X-ray binaries (LMXBs) has been one of the most common tools to measure the radius of neutron stars (NSs) for over a decade. So far, this method has been mainly applied to NSs in globular clusters, primar ily because of their well-constrained distances. Here, we study Chandra data of seven transient LMXBs in the Galactic plane in quiescence to investigate the potential of constraining the radius (and mass) of the NSs inhabiting these systems. We find that only two of these objects had X-ray spectra of sufficient quality to obtain reasonable constraints on the radius, with the most stringent being an upper limit of $Rlesssim$14.5 km for EXO 0748-676 (for assumed ranges for mass and distance). Using these seven sources, we also investigate systematic biases on the mass/radius determination; for Aql X-1 we find that omitting a power-law spectral component when it does not seem to be required by the data, results in peculiar trends in the obtained radius with changing mass and distance. For EXO 0748-676 we find that a slight variation in the lower limit of the energy range chosen for the fit leads to systematically different masses and radii. Finally, we simulated Athena spectra and found that some of the biases can be lifted when higher quality spectra are available and that, in general, the search for constraints on the equation of state of ultra-dense matter via NS radius and mass measurements may receive a considerable boost in the future.
106 - D. M. Alexander 2016
We briefly review the synergy between X-ray and infrared observations for Active Galactic Nuclei (AGNs) detected in cosmic X-ray surveys, primarily with XMM-Newton, Chandra, and NuSTAR. We focus on two complementary aspects of this X-ray-infrared syn ergy (1) the identification of the most heavily obscured AGNs and (2) the connection between star formation and AGN activity. We also briefly discuss future prospects for X-ray-infrared studies over the next decade.
We present nearly simultaneous NuSTAR and XMM-Newton observations of the nearby (832 kpc) ultraluminous X-ray source (ULX) M33 X-8. M33 X-8 has a 0.3-10 keV luminosity of LX ~ 1.4 x 10^39 erg/s, near the boundary of the ultraluminous classification, making it an important source for understanding the link between typical Galactic X-ray binaries and ULXs. Past studies have shown that the 0.3-10 keV spectrum of X-8 can be characterized using an advection-dominated accretion disk model. We find that when fitting to our NuSTAR and XMM-Newton observations, an additional high-energy (>10 keV) Comptonization component is required, which allows us to rule out single advection-dominated disk and classical sub-Eddington models. With our new constraints, we analyze XMM-Newton data taken over the last 17 years to show that small (~30%) variations in the 0.3-10 keV flux of M33 X-8 result in spectral changes similar to those observed for other ULXs. The two most likely phenomenological scenarios suggested by the data are degenerate in terms of constraining the nature of the accreting compact object (i.e., black hole versus neutron star). We further present a search for pulsations using our suite of data; however, no clear pulsations are detected. Future observations designed to observe M33 X-8 at different flux levels across the full 0.3-30 keV range would significantly improve our constraints on the nature of this important source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا