ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors

137   0   0.0 ( 0 )
 نشر من قبل Shivaraj Kandhasamy
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a non-co-located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGOs fifth science run. At low frequencies, 40 - 460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a $95%$ confidence level (C.L.) upper limit on the gravitational-wave energy density of Omega(f)<7.7 x 10^{-4} (f/ 900 Hz)^3, which improves on the previous upper limit by a factor of $sim 180$. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.



قيم البحث

اقرأ أيضاً

233 - K. Wette , B. J. Owen , B. Allen 2008
We describe a search underway for periodic gravitational waves from the central compact object in the supernova remnant Cassiopeia A. The object is the youngest likely neutron star in the Galaxy. Its position is well known, but the object does not pu lse in any electromagnetic radiation band and thus presents a challenge in searching the parameter space of frequency and frequency derivatives. We estimate that a fully coherent search can, with a reasonable amount of time on a computing cluster, achieve a sensitivity at which it is theoretically possible (though not likely) to observe a signal even with the initial LIGO noise spectrum. Cassiopeia A is only the second object after the Crab pulsar for which this is true. The search method described here can also obtain interesting results for similar objects with current LIGO sensitivity.
We describe the current status of the search for gravitational waves from inspiralling compact binary systems in LIGO data. We review the result from the first scientific run of LIGO (S1). We present the goals of the search of data taken in the secon d scientific run (S2) and describe the differences between the methods used in S1 and S2.
We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of [-1.0, +0.1]e-8 Hz/s. Such a signal could be produced by a nearby spinning and slightly non-axisymmet ric isolated neutron star in our galaxy. This search uses the data from Advanced LIGOs first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are 4e-25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are 1.5e-25. These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are 2.5e-25.
Isolated spinning neutron stars, asymmetric with respect to their rotation axis, are expected to be sources of continuous gravitational waves. The most sensitive searches for these sources are based on accurate matched filtering techniques, that assu me the continuous wave to be phase-locked with the pulsar beamed emission. While matched filtering maximizes the search sensitivity, a significant signal-to-noise ratio loss will happen in case of a mismatch between the assumed and the true signal phase evolution. Narrow-band algorithms allow for a small mismatch in the frequency and spin-down values of the pulsar while integrating coherently the entire data set. In this paper we describe a narrow-band search using LIGO O2 data for the continuous wave emission of 33 pulsars. No evidence for a continuous wave signal has been found and upper-limits on the gravitational wave amplitude, over the analyzed frequency and spin-down volume, have been computed for each of the targets. In this search we have surpassed the spin-down limit for some of the pulsars already present in the O1 LIGO narrow-band search, such as J1400textminus6325 J1813textminus1246, J1833textminus1034, J1952+3252, and for new targets such as J0940textminus5428 and J1747textminus2809. For J1400textminus6325, J1833textminus1034 and J1747textminus2809 this is the first time the spin-down limit is surpassed.
The first generation of ground-based interferometric gravitational wave detectors, LIGO, GEO and Virgo, have operated and taken data at their design sensitivities over the last few years. The data has been examined for the presence of gravitational w ave signals. Presented here is a comprehensive review of the most significant results. The network of detectors is currently being upgraded and extended, providing a large likelihood for observations. These future prospects will also be discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا