ترغب بنشر مسار تعليمي؟ اضغط هنا

The Survey of Lines in M31 (SLIM): Investigating the Origins of [CII] Emission

263   0   0.0 ( 0 )
 نشر من قبل Maria Kapala
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The [CII] 158 micron line is one of the strongest emission lines observed in star-forming galaxies, and has been empirically measured to correlate with the star formation rate (SFR) globally and on ~kpc scales. However, due to the multi-phase origins of [CII], one might expect this relation to break down at small scales. We investigate the origins of [CII] emission by examining high spatial resolution observations of [CII] in M31, with the Survey of Lines in M31 (SLIM). We present five ~700x700 pc (3x3) Fields mapping the [CII] emission, Halpha emission, combined with ancillary infrared (IR) data. We spatially separate star-forming regions from diffuse gas and dust emission on ~50 pc scales. We find that the [CII] - SFR correlation holds even at these scales, although the relation typically has a flatter slope than found at larger (~kpc) scales. While the Halpha emission in M31 is concentrated in the SFR regions, we find that a significant amount (~20-90%) of the [CII] emission comes from outside star-forming regions, and that the total IR (TIR) emission has the highest diffuse fraction of all SFR tracers. We find a weak correlation of the [CII]/TIR to dust color in each Field, and find a large scale trend of increasing [CII]/TIR with galactocentric radius. The differences in the relative diffuse fractions of [CII], Halpha and IR tracers are likely caused by a combination of energetic photon leakage from HII regions and heating by the diffuse radiation field arising from older (B-star) stellar populations. However, we find that by averaging our measurements over ~kpc scales, these effects are minimized, and the relation between [CII] and SFR found in other nearby galaxy studies is retrieved.



قيم البحث

اقرأ أيضاً

The ratio of the [CII] 158$,mu$m emission line over the total infrared emission (TIR) is often used as a proxy for the photoelectric (PE) heating efficiency ($epsilon_{rm PE}$) of the far-ultraviolet (FUV) photons absorbed by dust in the interstellar medium. In the nearby galaxy M31, we measure a strong radial variation of [CII]/TIR that we rule out as being due to an intrinsic variation in $epsilon_{rm PE}$. [CII]/TIR fails as a proxy for $epsilon_{rm PE}$, because the TIR measures all dust heating, not just the contribution from FUV photons capable of ejecting electrons from dust grains. Using extensive multiwavelength coverage from the FUV to far-infrared (FIR), we infer the attenuated FUV emission ($rm UV_{att}$), and the total attenuated flux ($rm TOT_{att}$). We find [CII]/TIR to be strongly correlated with $rm UV_{att}$/$rm TOT_{att}$, indicating that, in M31 at least, one of the dominant drivers for [CII]/TIR variation is the relative hardness of the absorbed stellar radiation field. We define $rm{ epsilon_{PE}^{UV}}$, [CII]/$rm{ UV_{att}}$ which should be more closely related to the actual PE efficiency, which we find to be essentially constant ($1.85 pm 0.8 %$) in all explored fields in M31. This suggests that part of the observed variation of [CII]/TIR in other galaxies is likely due to a change in the relative hardness of the absorbed stellar radiation field, caused by a combination of variations in the stellar population, dust opacity and galaxy metallicity, although PE efficiency may also vary across a wider range of environments.
The [CII] 158um fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [CII] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [CII] emission remains unclear, because C+ can be found in multiple phases of the interstellar medium. Here we measure the fractions of [CII] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [NII] 205um fine-structure line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [CII]/[NII] 122um. Using the FIR [CII] and [NII] emission detected by the KINGFISH and Beyond the Peak Herschel programs, we show that 60-80% of [CII] emission originates from neutral gas. We find that the fraction of [CII] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [CII] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.
The observed line intensity ratios of the Si II 1263 and 1307 AA multiplets to that of Si II 1814,AA in the broad line region of quasars are both an order of magnitude larger than the theoretical values. This was first pointed out by Baldwin et al. ( 1996), who termed it the Si II disaster, and it has remained unresolved. We investigate the problem in the light of newly-published atomic data for Si II. Specifically, we perform broad line region calculations using several different atomic datasets within the CLOUDY modeling code under optically thick quasar cloud conditions. In addition, we test for selective pumping by the source photons or intrinsic galactic reddening as possible causes for the discrepancy, and also consider blending with other species. However, we find that none of the options investigated resolves the Si II disaster, with the potential exception of microturbulent velocity broadening and line blending. We find that a larger microturbulent velocity ($sim 500 rm , kms^{-1}$) may solve the Si II disaster through continuum pumping and other effects. The CLOUDY models indicate strong blending of the Si II 1307 AA multiplet with emission lines of O I, although the predicted degree of blending is incompatible with the observed 1263/1307 intensity ratios. Clearly, more work is required on the quasar modelling of not just the Si II lines but also nearby transitions (in particular those of O I) to fully investigate if blending may be responsible for the Si II disaster.
75 - Jorge L. Pineda 2018
We present a [CII] 158um map of the entire M51 (including M51b) grand--design spiral galaxy observed with the FIFI-LS instrument on SOFIA. We compare the [CII] emission with the total far--infrared (TIR) intensity and star formation rate(SFR) surface density maps (derived using H_alpha and 24um emission) to study the relationship between [CII] and the star formation activity in a variety of environments within M51 on scales of 16 corresponding to ~660 pc. We find that [CII] and the SFR surface density are well correlated in the central, spiral arm, and inter-arm regions. The correlation is in good agreement with that found for a larger sample of nearby galaxies at kpc scales. We find that the SFR, and [CII] and TIR luminosities in M51 are dominated by the extended emission in M51s disk. The companion galaxy M51b, however, shows a deficit of [CII] emission compared with the TIR emission and SFR surface density, with [CII] emission detected only in the S-W part of this galaxy. The [CII] deficit is associated with an enhanced dust temperature in this galaxy. We interpret the faint [CII] emission in M51b to be a result of suppressed star formation in this galaxy, while the bright mid- and far-infrared emission, which drive the TIR and SFR values, are powered by other mechanisms. A similar but less pronounced effect is seen at the location of the black hole in M51s center. The observed [CII] deficit in M51b suggests that this galaxy is a valuable laboratory to study the origin of the apparent [CII] deficit observed in ultra-luminous galaxies.
We have investigated the nature and origin of the Fe K emission lines in Mrk~205 using observations with {it Suzaku} and {it XMM-Newton}, aiming to resolve the ambiguity between a broad emission line and multiple unresolved lines of higher ionization . We detect the presence of a narrow Fe K$alpha$ emission line along with a broad band Compton reflection hump at energies $E>10 rm , keV$. These are consistent with reflected emission of hard X-ray photons off a Compton thick material of $N_{rm H} ge 2.15times 10^{24} rm cm^{-2}$. In addition we detect a partially covering ionized absorption with ionization parameter $log(xi/rm erg, cm, s^{-1})=1.9_{-0.5}^{+0.1}$, column density $N_{rm H}=(5.6_{-1.9}^{+2.0})times 10^{22}rm cm^{-2}$ and a covering factor of $0.22_{-0.06}^{+0.09}$. We detect the presence of emission arising out of ionized disk reflection contributing in the soft and the hard X-rays consistently in all the observations. We however, could not definitely ascertain the presence of a relativistically broadened Fe line in the X-ray spectra. Using relativistic reflection model, we found that the data are unable to statistically distinguish between the scenarios when the super-massive black hole is non-rotating and when it is maximally spinning. Using the disk reflection model we also find that the accretion disk of the AGN may be truncated at a distance $6R_{rm G}<R<12R_{rm G}$, which may suggest why there may not be any broad Fe line. The Eddington rate of the source is low ($lambda_{rm Edd}=0.03$), which points to an inefficient accretion, possibly due to a truncated disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا