ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-distance radiative coupling between quantum dots in photonic crystal dimers

175   0   0.0 ( 0 )
 نشر من قبل Dario Gerace
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the mutual interaction between two identical quantum dots coupled to the normal modes of two-site photonic crystal molecules in a planar waveguide geometry, i.e. photonic crystal dimers. We find that the radiative coupling between the two quantum emitters is maximized when they are in resonance with either the bonding or the antibonding modes of the coupled cavity system. Moreover, we find that such effective interdot coupling is sizable, in the meV range, and almost independent from the cavities distance, as long as a normal mode splitting exceeding the radiative linewidth can be established (strong cavity-cavity coupling condition). In realistic and high quality factor photonic crystal cavity devices, such distance can largely exceed the emission wavelength, which is promising for long distance entanglement generation between two qubits in an integrated nanophotonic platform. We show that these results are robust against position disorder of the two quantum emitters within their respective cavities.

قيم البحث

اقرأ أيضاً

Scalable architectures for quantum information technologies require to selectively couple long-distance qubits while suppressing environmental noise and cross-talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot t o a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated long-distance coupling effectively minimizes undesirable direct cross-talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
Because of their long coherence times and potential for scalability, semiconductor quantum-dot spin qubits hold great promise for quantum information processing. However, maintaining high connectivity between quantum-dot spin qubits, which favor line ar arrays with nearest neighbor coupling, presents a challenge for large-scale quantum computing. In this work, we present evidence for long-distance spin-chain-mediated superexchange coupling between electron spin qubits in semiconductor quantum dots. We weakly couple two electron spins to the ends of a two-site spin chain. Depending on the spin state of the chain, we observe oscillations between the distant end spins. We resolve the dynamics of both the end spins and the chain itself, and our measurements agree with simulations. Superexchange is a promising technique to create long-distance coupling between quantum-dot spin qubits.
We present experimental results showing phonon-mediated coupling between two quantum dots embedded inside a photonic crystal microcavity. With only one of the dots being spectrally close to the cavity, we observe both frequency up-conversion and down -conversion of the pump light via a $sim1.2$ THz phonon. We demonstrate this process for both weak and strong regimes of dot-cavity coupling, and provide a simple theoretical model explaining our observations.
The Heisenberg exchange interaction between neighboring quantum dots allows precise voltage control over spin dynamics, due to the ability to precisely control the overlap of orbital wavefunctions by gate electrodes. This allows the study of fundamen tal electronic phenomena and finds applications in quantum information processing. Although spin-based quantum circuits based on short-range exchange interactions are possible, the development of scalable, longer-range coupling schemes constitutes a critical challenge within the spin-qubit community. Approaches based on capacitative coupling and cavity-mediated interactions effectively couple spin qubits to the charge degree of freedom, making them susceptible to electrically-induced decoherence. The alternative is to extend the range of the Heisenberg exchange interaction by means of a quantum mediator. Here, we show that a multielectron quantum dot with 50-100 electrons serves as an excellent mediator, preserving speed and coherence of the resulting spin-spin coupling while providing several functionalities that are of practical importance. These include speed (mediated two-qubit rates up to several gigahertz), distance (of order of a micrometer), voltage control, possibility of sweet spot operation (reducing susceptibility to charge noise), and reversal of the interaction sign (useful for dynamical decoupling from noise).
Practical quantum computers require the construction of a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a physical platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and allows hundreds of nanometers inter-qubit distances, therefore facilitating fabrication using current technology. All qubit operations are performed via electrical means on the electron-nuclear spin states of a phosphorus donor. Single-qubit gates use low power electric drive at microwave frequencies, while fast two-qubit gates exploit electric dipole-dipole interactions. Microwave resonators allow for millimeter-distance entanglement and interfacing with photonic links. Sweet spots protect the qubits from charge noise up to second order, implying that all operations can be performed with error rates below quantum error correction thresholds, even without any active noise cancellation technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا