ترغب بنشر مسار تعليمي؟ اضغط هنا

DNA methylation variation in Arabidopsis has a genetic basis and shows evidence of local adaptation

132   0   0.0 ( 0 )
 نشر من قبل Manu Dubin
 تاريخ النشر 2014
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epigenome modulation in response to the environment potentially provides a mechanism for organisms to adapt, both within and between generations. However, neither the extent to which this occurs, nor the molecular mechanisms involved are known. Here we investigate DNA methylation variation in Swedish Arabidopsis thaliana accessions grown at two different temperatures. Environmental effects on DNA methylation were limited to transposons, where CHH methylation was found to increase with temperature. Genome-wide association mapping revealed that the extensive CHH methylation variation was strongly associated with genetic variants in both cis and trans, including a major trans-association close to the DNA methyltransferase CMT2. Unlike CHH methylation, CpG gene body methylation (GBM) on the coding region of genes was not affected by growth temperature, but was instead strongly correlated with the latitude of origin. Accessions from colder regions had higher levels of GBM for a significant fraction of the genome, and this was correlated with elevated transcription levels for the genes affected. Genome-wide association mapping revealed that this effect was largely due to trans-acting loci, a significant fraction of which showed evidence of local adaptation. These findings constitute the first direct link between DNA methylation and adaptation to the environment, and provide a basis for further dissecting how environmentally driven and genetically determined epigenetic variation interact and influence organismal fitness.



قيم البحث

اقرأ أيضاً

Background: Recent assays for individual-specific genome-wide DNA methylation profiles have enabled epigenome-wide association studies to identify specific CpG sites associated with a phenotype. Computational prediction of CpG site-specific methylati on levels is important, but current approaches tackle average methylation within a genomic locus and are often limited to specific genomic regions. Results: We characterize genome-wide DNA methylation patterns, and show that correlation among CpG sites decays rapidly, making predictions solely based on neighboring sites challenging. We built a random forest classifier to predict CpG site methylation levels using as features neighboring CpG site methylation levels and genomic distance, and co-localization with coding regions, CGIs, and regulatory elements from the ENCODE project, among others. Our approach achieves 91% -- 94% prediction accuracy of genome-wide methylation levels at single CpG site precision. The accuracy increases to 98% when restricted to CpG sites within CGIs. Our classifier outperforms state-of-the-art methylation classifiers and identifies features that contribute to prediction accuracy: neighboring CpG site methylation status, CpG island status, co-localized DNase I hypersensitive sites, and specific transcription factor binding sites were found to be most predictive of methylation levels. Conclusions: Our observations of DNA methylation patterns led us to develop a classifier to predict site-specific methylation levels that achieves the best DNA methylation predictive accuracy to date. Furthermore, our method identified genomic features that interact with DNA methylation, elucidating mechanisms involved in DNA methylation modification and regulation, and linking different epigenetic processes.
The understanding of mechanisms that control epigenetic changes is an important research area in modern functional biology. Epigenetic modifications such as DNA methylation are in general very stable over many cell divisions. DNA methylation can howe ver be subject to specific and fast changes over a short time scale even in non-dividing (i.e. not-replicating) cells. Such dynamic DNA methylation changes are caused by a combination of active demethylation and de novo methylation processes which have not been investigated in integrated models. Here we present a hybrid (hidden) Markov model to describe the cycle of methylation and demethylation over (short) time scales. Our hybrid model decribes several molecular events either happening at deterministic points (i.e. describing mechanisms that occur only during cell division) and other events occurring at random time points. We test our model on mouse embryonic stem cells using time-resolved data. We predict methylation changes and estimate the efficiencies of the different modification steps related to DNA methylation and demethylation.
Social networks exhibit strikingly systematic patterns across a wide range of human contexts. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a mirror network method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative Attract and Introduce model with two simple forms of heterogeneity that generates significant heritability as well as other important network features. We show that the model is well suited to real social networks in humans. These results suggest that natural selection may have played a role in the evolution of social networks. They also suggest that modeling intrinsic variation in network attributes may be important for understanding the way genes affect human behaviors and the way these behaviors spread from person to person.
Methylation and hydroxylation of cytosines to form 5-methylcytosine (5mC) and 5-droxymethylcytosine (5hmC) belong to the most important epigenetic modifications and their vital role in the regulation of gene expression has been widely recognized. Rec ent experimental techniques allow to infer methylation and hydroxylation levels at CpG dinucleotides but require a sophisticated statistical analysis to achieve accurate estimates.
DNA methylation is an epigenetic mechanism whose important role in development has been widely recognized. This epigenetic modification results in heritable changes in gene expression not encoded by the DNA sequence. The underlying mechanisms control ling DNA methylation are only partly understood and recently different mechanistic models of enzyme activities responsible for DNA methylation have been proposed. Here we extend existing Hidden Markov Models (HMMs) for DNA methylation by describing the occurrence of spatial methylation patterns over time and propose several models with different neighborhood dependencies. We perform numerical analysis of the HMMs applied to bisulfite sequencing measurements and accurately predict wild-type data. In addition, we find evidence that the enzymes activities depend on the left 5 neighborhood but not on the right 3 neighborhood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا