ترغب بنشر مسار تعليمي؟ اضغط هنا

The CARMA Paired Antenna Calibration System: Atmospheric Phase Correction for Millimeter Wave Interferometry and its Application to Mapping the Ultraluminous Galaxy Arp 193

229   0   0.0 ( 0 )
 نشر من قبل Bevin Zauderer
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase fluctuations introduced by the atmosphere are the main limiting factor in attaining diffraction limited performance in extended interferometric arrays at millimeter and submillimeter wavelengths. We report the results of C-PACS, the Combined Array for Research in Millimeter-Wave Astronomy Paired Antenna Calibration System. We present a systematic study of several hundred test observations taken during the 2009-2010 winter observing season where we utilize CARMAs eight 3.5-m antennas to monitor an atmospheric calibrator while simultaneously acquiring science observations with 6.1-m and 10.4-m antennas on baselines ranging from a few hundred meters to ~2 km. We find that C-PACS is systematically successful at improving coherence on long baselines under a variety of atmospheric conditions. We find that the angular separation between the atmospheric calibrator and target source is the most important consideration, with consistently successful phase correction at CARMA requiring a suitable calibrator located $lesssim$6$^circ$ away from the science target. We show that cloud cover does not affect the success of C-PACS. We demonstrate C-PACS in typical use by applying it to the observations of the nearby very luminous infrared galaxy Arp 193 in $^{12}$CO(2-1) at a linear resolution of ~70 pc (0.12 x 0.18), 3 times better than previously published molecular maps of this galaxy. We resolve the molecular disk rotation kinematics and the molecular gas distribution and measure the gas surface densities and masses on 90 pc scales. We find that molecular gas constitutes $sim30%$ of the dynamical mass in the inner 700 pc of this object with a surface density $sim10^4 M_odot$ pc$^{-2}$; we compare these properties to those of the starburst region of NGC 253.

قيم البحث

اقرأ أيضاً

This is the third installment in a series of papers in which we investigate calibration artefacts. Calibration artefacts (also known as ghosts or spurious sources) are created when we calibrate with an incomplete model. In the first two papers of thi s series we developed a mathematical framework which enabled us to study the ghosting mechanism itself. An interesting concomitant of the second paper was that ghosts appear in symmetrical pairs. This could possibly account for spurious symmetrization. Spurious symmetrization refers to the appearance of a spurious source (the anti-ghost) symmetrically opposite an unmodelled source around a modelled source. The analysis in the first two papers indicates that the anti-ghost is usually very faint, in particular when a large number of antennas are used. This suggests that spurious symmetrization will mainly occur at an almost undetectable flux level. In this paper, we show that phase-only calibration produces an anti-ghost that is $N$-times (where $N$ denotes the number of antennas in the array) as bright as the one produced by phase and amplitude calibration and that this already bright ghost can be further amplified by the primary beam correction.
74 - Tamas Budavari 2012
Object cross-identification in multiple observations is often complicated by the uncertainties in their astrometric calibration. Due to the lack of standard reference objects, an image with a small field of view can have significantly larger errors i n its absolute positioning than the relative precision of the detected sources within. We present a new general solution for the relative astrometry that quickly refines the World Coordinate System of overlapping fields. The efficiency is obtained through the use of infinitesimal 3-D rotations on the celestial sphere, which do not involve trigonometric functions. They also enable an analytic solution to an important step in making the astrometric corrections. In cases with many overlapping images, the correct identification of detections that match together across different images is difficult to determine. We describe a new greedy Bayesian approach for selecting the best object matches across a large number of overlapping images. The methods are developed and demonstrated on the Hubble Legacy Archive, one of the most challenging data sets today. We describe a novel catalog compiled from many Hubble Space Telescope observations, where the detections are combined into a searchable collection of matches that link the individual detections. The matches provide descriptions of astronomical objects involving multiple wavelengths and epochs. High relative positional accuracy of objects is achieved across the Hubble images, often sub-pixel precision in the order of just a few milli-arcseconds. The result is a reliable set of high-quality associations that are publicly available online.
57 - M. Doro , M. Gaug , O. Blanch 2013
The current generation of Cherenkov telescopes is mainly limited in their gamma-ray energy and flux reconstruction by uncertainties in the determination of atmospheric parameters. The Cherenkov Telescope Array (CTA) aims to provide high-precision dat a extending the duty cycle as much as possible. To reach this goal, it is necessary to continuously and precisely monitor the atmosphere by means of remote-sensing devices, which are able to provide altitude-resolved and wavelength-dependent extinction factors, sensitive up to the tropopause and higher. Raman LIDARs are currently the best suited technology to achieve this goal with one single instrument. However, the synergy with other instruments like radiometers, solar and stellar photometers, all-sky cameras, and possibly radio-sondes is desirable in order to provide more precise and accurate results, and allows for weather forecasts and now-casts. In this contribution, we will discuss the need and features of such multifaceted atmospheric calibration systems.
In order to allow for a comparison with the measurements from other antenna systems, the voltage power spectral density measured by the Radio and Plasma waves receiver (RPW) on board Solar Orbiter needs to be converted into physical quantities that d epend on the intrinsic properties of the radiation itself.The main goal of this study is to perform a calibration of the RPW dipole antenna system that allows for the conversion of the voltage power spectral density measured at the receivers input into the incoming flux density. We used space observations from the Thermal Noise Receiver (TNR) and the High Frequency Receiver (HFR) to perform the calibration of the RPW dipole antenna system. Observations of type III bursts by the Wind spacecraft are used to obtain a reference radio flux density for cross-calibrating the RPW dipole antennas. The analysis of a large sample of HFR observations (over about ten months), carried out jointly with an analysis of TNR-HFR data and prior to the antennas deployment, allowed us to estimate the reference system noise of the TNR-HFR receivers. We obtained the effective length of the RPW dipoles and the reference system noise of TNR-HFR in space, where the antennas and pre-amplifiers are embedded in the solar wind plasma. The obtained $l_{eff}$ values are in agreement with the simulation and measurements performed on the ground. By investigating the radio flux intensities of 35 type III bursts simultaneously observed by Solar Orbiter and Wind, we found that while the scaling of the decay time as a function of the frequency is the same for the Waves and RPW instruments, their median values are higher for the former. This provides the first observational evidence that Type III radio waves still undergo density scattering, even when they propagate from the source, in a medium with a plasma frequency that is well below their own emission frequency.
Lunar laser ranging provides a number of leading experimental tests of gravitation -- important in our quest to unify General Relativity and the Standard Model of physics. The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has for ye ars achieved median range precision at the ~2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in-situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (< 10 ps) pulses that are locked to a cesium clock. In essence, the ACS delivers photons to the APOLLO detector at exquisitely well-defined time intervals as a truth input against which APOLLOs timing performance may be judged and corrected. Preliminary analysis indicates no inaccuracies in APOLLO data beyond the ~3 mm level, suggesting that historical APOLLO data are of high quality and motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا