ﻻ يوجد ملخص باللغة العربية
As a potential candidate for quantum computation and metrology, the nitrogen vacancy (NV)center in diamond presented both challenges and opportunities resulted from charge state conversion. By utilizing different lasers for the photon-induced charge state conversion, we achieved the sub-diffraction charge state manipulation. The charge state depletion (CSD) microscopy resolution was improved to 4.1 nm by optimizing the laser pulse sequences. Subsequently, the electron spin state dynamics of adjacent NV centers were selectively detected via the CSD. The experimental results demonstrated that the CSD can improve the spatial resolution of the measurement of NV centers for nanoscale sensing and quantum information.
We theoretically propose a method to realize optical nonreciprocity in rotating nano-diamond with a nitrogen-vacancy (NV) center. Because of the relative motion of the NV center with respect to the propagating fields, the frequencies of the fields ar
We study the resonant optical transitions of a single nitrogen-vacancy (NV) center that is coherently dressed by a strong mechanical drive. Using a gigahertz-frequency diamond mechanical resonator that is strain-coupled to an NV centers orbital state
The diamond nitrogen-vacancy (NV) center is a leading platform for quantum information science due to its optical addressability and room-temperature spin coherence. However, measurements of the NV centers spin state typically require averaging over
Applications of negatively charged nitrogen-vacancy center in diamond exploit the centers unique optical and spin properties, which at ambient temperature, are predominately governed by electron-phonon interactions. Here, we investigate these interac
Quantum state tomography (QST) is the procedure for reconstructing unknown quantum states from a series of measurements of different observables. Depending on the physical system, different sets of observables have been used for this procedure. In th