ﻻ يوجد ملخص باللغة العربية
Flavour symmetries have been used to constrain both quark and lepton mixing parameters. In particular, they can be used to completely fix the mixing angles. For the lepton sector, assuming that neutrinos are Majorana particles, we have derived the complete list of mixing patterns achievable in this way, as well as the symmetry groups associated to each case. Partial computer scans done in the past have hinted that such list is limited, and this does indeed turn out to be the case. In addition, most mixing patterns are already 3-sigma excluded by neutrino oscillation data.
The classification of lepton mixing matrices from finite residual symmetries is reviewed, with emphasis on the role of vanishing sums of roots of unity for the solution of this problem.
Assuming that neutrinos are Majorana particles, we perform a complete classification of all possible mixing matrices which are fully determined by residual symmetries in the charged-lepton and neutrino mass matrices. The classification is based on th
We investigate the possibility that the first column of the lepton mixing matrix U is given by u_1 = (2,-1,-1)^T/sqrt{6}. In a purely group-theoretical approach, based on residual symmetries in the charged-lepton and neutrino sectors and on a theorem
We perform a model-independent global fit to $bto sell^+ell^-$ observables to confirm existing New Physics (NP) patterns (or scenarios) and to identify new ones emerging from the inclusion of the updated LHCb and Belle measurements of $R_K$ and $R_{K
We look for predictive flavour patterns of the effective Majorana neutrino mass matrix that are compatible with current neutrino oscillation data. Our search is based on the assumption that the neutrino mass matrix contains equal elements and a minim