Orlovs famous representability theorem asserts that any fully faithful exact functor between the bounded derived categories of coherent sheaves on smooth projective varieties is a Fourier-Mukai functor. In this paper we show that this result is false without the full faithfulness hypothesis.
Orlovs famous representability theorem asserts that any fully faithful functor between the derived categories of coherent sheaves on smooth projective varieties is a Fourier-Mukai functor. This result has been extended by Lunts and Orlov to include f
unctors from perfect complexes to quasi-coherent complexes. In this paper we show that the latter extension is false without the full faithfulness hypothesis. Our results are based on the properties of scalar extensions of derived categories, whose investigation was started by Pawel Sosna and the first author.
On a Weierstra{ss} elliptic surface $X$, we define a `limit of Bridgeland stability conditions, denoted as $Z^l$-stability, by moving the polarisation towards the fiber direction in the ample cone while keeping the volume of the polarisation fixed. W
e describe conditions under which a slope stable torsion-free sheaf is taken by a Fourier-Mukai transform to a $Z^l$-stable object, and describe a modification upon which a $Z^l$-semistable object is taken by the inverse Fourier-Mukai transform to a slope semistable torsion-free sheaf. We also study wall-crossing for Bridgeland stability, and show that 1-dimensional twisted Gieseker semistable sheaves are taken by a Fourier-Mukai transform to Bridgeland semistable objects.
In this paper we prove that any smooth projective variety of dimension $ge 3$ equipped with a tilting bundle can serve as the source variety of a non-Fourier-Mukai functor between smooth projective schemes.
Given a Fourier-Mukai functor $Phi$ in the general setting of singular schemes, under various hypotheses we provide both left and a right adjoints to $Phi$, and also give explicit formulas for them. These formulas are simple and natural, and recover
the usual formulas when the Fourier-Mukai kernel is a perfect complex. This extends previous work of Anno and Logvinenko, and Hernandez Ruiperez, Lopez Martin and Sancho de Salas, and has applications to the twist autoequivalences of Donovan and Wemyss.
In this article, we prove that a tame twisted K3 surface over an algebraically closed field of positive characteristic has only finitely many tame twisted Fourier-Mukai partners and we give a counting formula in case we have an ordinary tame untwiste
d K3 surface. We also show that every tame twisted Fourier Mukai partner of a K3 surface of finite height is a moduli space of twisted sheaves over it.
Alice Rizzardo
,Michel Van den Bergh
,Amnon Neeman
.
(2014)
.
"An example of a non-Fourier-Mukai functor between derived categories of coherent sheaves"
.
Michel Van den Bergh
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا