ترغب بنشر مسار تعليمي؟ اضغط هنا

Vector form factor of the pion in chiral effective field theory

238   0   0.0 ( 0 )
 نشر من قبل Jambul Gegelia
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied.



قيم البحث

اقرأ أيضاً

136 - S. Kolling 2012
We calculate the magnetic form factor of the deuteron up to O(eP^4) in the chiral EFT expansion of the electromagnetic current operator. The two LECs which enter the two-body part of the isoscalar NN three-current operator are fit to experimental dat a, and the resulting values are of natural size. The O(eP^4) description of G_M agrees with data for momentum transfers Q^2 < 0.35 GeV^2.
We present a comprehensive study of the electromagnetic form factor, the decay constant and the mass of the pion computed in lattice QCD with two degenerate O(a)-improved Wilson quarks at three different lattice spacings in the range 0.05-0.08fm and pion masses between 280 and 630MeV at m_pi L >~ 4. Using partially twisted boundary conditions and stochastic estimators, we obtain a dense set of precise data points for the form factor at very small momentum transfers, allowing for a model-independent extraction of the charge radius. Chiral Perturbation Theory (ChPT) augmented by terms which model lattice artefacts is then compared to the data. At next-to-leading order the effective theory fails to produce a consistent description of the full set of pion observables but describes the data well when only the decay constant and mass are considered. By contrast, using the next-to-next-to-leading order expressions to perform global fits result in a consistent description of all data. We obtain <r^2_pi>=0.481(33)(13)fm^2 as our final result for the charge radius at the physical point. Our calculation also yields estimates for the pion decay constant in the chiral limit, F_pi/F=1.080(16)(6), the quark condensate, Sigma^{1/3}_MSbar(2GeV)=261(13)(1)MeV and several low-energy constants of SU(2) ChPT.
We study the unitarized meson-baryon scattering amplitude at leading order in the strangeness $S=-1$ sector using time-ordered perturbation theory for a manifestly Lorentz-invariant formulation of chiral effective field theory. By solving the coupled -channel integral equations with the full off-shell dependence of the effective potential and applying subtractive renormalization, we analyze the renormalized scattering amplitudes and obtain the two-pole structure of the $Lambda(1405)$ resonance. We also point out the necessity of including higher-order terms.
We examine the quark mass dependence of the pion vector form factor, particularly the curvature (mean quartic radius). We focus our study on the consequences of assuming that the coupling constant of the rho to pions is largely independent of the qua rk mass while the quark mass dependence of the rho--mass is given by recent lattice data. By employing the Omnes representation we can provide a very clean estimate for a certain combination of the curvature and the square radius, whose quark mass dependence could be determined from lattice computations. This study provides an independent access to the quark mass dependence of the rho-pi-pi coupling and in this way a non-trivial check of the systematics of chiral extrapolations. We also provide an improved value for the curvature for physical values for the quark masses, namely <r^4> = 0.73 +- 0.09 fm^4 or equivalently c_V=4.00pm 0.50 GeV^{-4}.
The measured electromagnetic form factors of $Lambda$ hyperon in the time-like region are significantly deviated from pQCD prediction. We attribute the non-vanishing cross section near threshold to be the contribution of below-threshold $phi$(2170) s tate, supporting its exotic structure. Above the threshold, we find significant role of a wide vector meson with the mass of around 2.34 GeV, which would be the same state present in $pbar{p}$ annihilation reactions. As a result, we give a satisfactory description of the behavior of existing data without modifying pQCD expectation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا